# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Python program to convert CSV to HTML Table import os import sys import argparse import numpy as np import pandas as pd def highlight_vals(val, max=3.0, color1='red', color2='green', color3='yellow', is_last=False): if isinstance(val, float): if val > max: return 'background-color: %s' % color2 elif val <= -max: return 'background-color: %s' % color1 elif val != 0.0 and is_last: return 'background-color: %s' % color3 else: return '' def calculate_percentage_difference(cur_array, previous_array): new_array = [] for i in range(len(cur_array)): if type(cur_array[i]) == type(pd.NA) or type(previous_array[i]) == type(pd.NA): new_array.append(pd.NA) else: new_array.append(round((cur_array[i]-previous_array[i])*100/previous_array[i], 2)) return np.array(new_array) def check_diffs_within_normal_range(latest_csv, highlight_set, threshold): within = True for column in highlight_set: for value in latest_csv[column]: if type(value) != type(pd.NA): within = within and abs(value) <= threshold return within def main(): parser = argparse.ArgumentParser(description="convert .csv file to .html file") parser.add_argument("-f", "--folder_path", type=str, dest="folder_path", help="The directory which stores the .csv file", default="/home/arda/BigDL/python/llm/dev/benchmark/ceval") parser.add_argument("-t", "--threshold", type=float, dest="threshold", help="the threshold of highlight values", default=3.0) parser.add_argument("-b", "--baseline_path", type=str, dest="baseline_path", help="the baseline path which stores the baseline.csv file") args = parser.parse_args() csv_files = [] for file_name in os.listdir(args.folder_path): file_path = os.path.join(args.folder_path, file_name) if os.path.isfile(file_path) and file_name.endswith(".csv"): csv_files.append(file_path) csv_files.sort(reverse=True) highlight_threshold=args.threshold # get the newest csv file latest_csv = pd.read_csv(csv_files[0], index_col=0) # create daily html file daily_html=csv_files[0].split(".")[0]+".html" # add index column latest_csv.reset_index(inplace=True) # if found more than 1 csv file if len(csv_files)>1: if args.baseline_path: previous_csv = pd.read_csv(args.baseline_path, index_col=0) else: previous_csv = pd.read_csv(csv_files[1], index_col=0) subjects = ['STEM', 'Social Science', 'Humanities', 'Other', 'Hard', 'Average'] precisions = ['sym_int4', 'fp8_e5m2'] highlight_set = [] insert_column = latest_csv.shape[-1]-1 # in the make_csv step we will handle the missing values and make it pd.NA for subject in subjects: # insert last accuracy task latest_csv.insert(loc=insert_column, column=f'last_{subject}', value=previous_csv[subject]) # insert precentage difference between previous and current value latest_csv.insert( loc=insert_column+1, column=f'diff_{subject}(%)', value=calculate_percentage_difference(latest_csv[subject], previous_csv[subject])) # append in the highlight set highlight_set.append(f'diff_{subject}(%)') # update insert column insert_column += 2 columns = {} for column in latest_csv.columns.values.tolist(): columns[column] = '{:.2f}' styled_df = latest_csv.style.format(columns).applymap(lambda val: highlight_vals(val, max=3.0, is_last=True), subset=highlight_set) # add css style to restrict width and wrap text styled_df.set_table_styles([{ 'selector': 'th, td', 'props': [('max-width', '88px'), ('word-wrap', 'break-word')] }], overwrite=False) html_output = styled_df.set_table_attributes("border=1").to_html() with open(daily_html, 'w') as f: f.write(html_output) else: latest_csv.to_html(daily_html) if args.baseline_path and not check_diffs_within_normal_range(latest_csv, highlight_set, highlight_threshold): print("The diffs are outside the normal range: %" + str(highlight_threshold)) return 1 return 0 if __name__ == "__main__": sys.exit(main())