# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import torch import transformers import time import argparse import torch.distributed as dist from fastapi import FastAPI, HTTPException from pydantic import BaseModel import uvicorn import asyncio, uuid from typing import Dict, List, Optional from transformers.utils import logging logger = logging.get_logger(__name__) from ipex_llm.utils.benchmark_util import BenchmarkWrapper def get_int_from_env(env_keys, default): """Returns the first positive env value found in the `env_keys` list or the default.""" for e in env_keys: val = int(os.environ.get(e, -1)) if val >= 0: return val return int(default) global max_num_seqs global max_num_batched_tokens local_rank = get_int_from_env(["LOCAL_RANK","PMI_RANK"], "0") world_size = get_int_from_env(["WORLD_SIZE","PMI_SIZE"], "1") os.environ["RANK"] = str(local_rank) os.environ["WORLD_SIZE"] = str(world_size) os.environ["MASTER_PORT"] = os.environ.get("MASTER_PORT", "29500") global model, tokenizer def load_model(model_path, low_bit): from ipex_llm import optimize_model import torch import time import argparse from transformers import AutoModelForCausalLM # export AutoModelForCausalLM from transformers so that deepspeed use it from transformers import LlamaTokenizer, AutoTokenizer import deepspeed from deepspeed.accelerator.cpu_accelerator import CPU_Accelerator from deepspeed.accelerator import set_accelerator, get_accelerator from intel_extension_for_deepspeed import XPU_Accelerator # First use CPU as accelerator # Convert to deepspeed model and apply IPEX-LLM optimization on CPU to decrease GPU memory usage current_accel = CPU_Accelerator() set_accelerator(current_accel) global model, tokenizer model = AutoModelForCausalLM.from_pretrained(model_path, device_map={"": "cpu"}, low_cpu_mem_usage=True, torch_dtype=torch.float16, trust_remote_code=True, use_cache=True) model = deepspeed.init_inference( model, tensor_parallel={"tp_size": world_size}, dtype=torch.bfloat16, replace_method="auto", ) # Use IPEX-LLM `optimize_model` to convert the model into optimized low bit format # Convert the rest of the model into float16 to reduce allreduce traffic model = optimize_model(model.module.to(f'cpu'), low_bit=low_bit).to(torch.float16) # Next, use XPU as accelerator to speed up inference current_accel = XPU_Accelerator() set_accelerator(current_accel) # Move model back to xpu model = model.to(f'xpu:{local_rank}') model = BenchmarkWrapper(model) # Modify backend related settings if world_size > 1: get_accelerator().set_device(local_rank) dist_backend = get_accelerator().communication_backend_name() import deepspeed.comm.comm deepspeed.comm.comm.cdb = None from deepspeed.comm.comm import init_distributed init_distributed() # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left') if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token def generate_text(prompt: List[str], n_predict = 32): while prompt[-1] == "": prompt = prompt[:-1] if isinstance(n_predict, list): n_predict = max(n_predict) inputs = tokenizer(prompt, return_tensors="pt", padding=True) input_ids = inputs.input_ids.to(f'xpu:{local_rank}') # print(input_ids) attention_mask = inputs.attention_mask.to(f'xpu:{local_rank}') output = model.generate(input_ids, attention_mask=attention_mask, max_new_tokens=n_predict, use_cache=True) torch.xpu.synchronize() return output class PromptRequest(BaseModel): prompt: str n_predict: int = 32 empty_req = PromptRequest(prompt="", n_predict=0) app = FastAPI() from collections import deque rest_req_deque = deque(maxlen=128) request_queue: asyncio.Queue = asyncio.Queue() result_dict: Dict[str, str] = {} @app.post("/generate/") async def generate(prompt_request: PromptRequest): request_id = str(uuid.uuid4()) await request_queue.put((request_id, prompt_request)) while True: await asyncio.sleep(0.1) if request_id in result_dict: output_str = result_dict.pop(request_id) return {"generated_text": output_str} async def process_requests(): while True: request_ids, prompt_requests = [], [] cur_batched_tokens = 0 if local_rank == 0: while rest_req_deque: request_id, rest_request = rest_req_deque.popleft() prompt = rest_request.prompt cur_prompt_len = tokenizer(prompt_request.prompt, return_tensors="pt").input_ids.size(1) cur_batched_tokens += cur_prompt_len if cur_batched_tokens > max_num_batched_tokens: cur_batched_tokens -= cur_prompt_len rest_req_deque.appendleft((request_id, rest_request)) break request_ids.append(request_id) prompt_requests.append(rest_request) if len(prompt_requests) == max_num_seqs: break for _ in range(max_num_seqs - len(prompt_requests)): if request_queue.empty(): break request_id, prompt_request = await request_queue.get() # import pdb # pdb.set_trace() cur_prompt_len = tokenizer(prompt_request.prompt, return_tensors="pt").input_ids.size(1) cur_batched_tokens += cur_prompt_len if cur_batched_tokens > max_num_batched_tokens: cur_batched_tokens -= cur_prompt_len rest_req_deque.appendleft((request_id, prompt_request)) break request_ids.append(request_id) prompt_requests.append(prompt_request) if local_rank == 0 and prompt_requests: object_list = prompt_requests if len(object_list) < max_num_seqs: object_list = object_list + [empty_req] * (max_num_seqs - len(object_list)) logger.info(f"Running: {len(prompt_requests)}, Pending: {request_queue.qsize()}") dist.broadcast_object_list(object_list, src=0) start_time = time.time() outputs = generate_text([req.prompt for req in object_list], [req.n_predict for req in object_list]) generate_time = time.time() - start_time outputs = outputs.cpu() output_strs = tokenizer.batch_decode(outputs, skip_special_tokens=True) output_strs = output_strs[:len(prompt_requests)] for request_id, output_str in zip(request_ids, output_strs): result_dict[request_id] = output_str logger.info(f"First token latency: {model.first_cost}, next token latency: {model.rest_cost_mean}, generate time: {generate_time}") await asyncio.sleep(0.1) @app.on_event("startup") async def startup_event(): if local_rank == 0: asyncio.create_task(process_requests()) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging DeepSpeed-AutoTP') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.') parser.add_argument('--port', type=int, default=8000, help='The port number on which the server will run.') parser.add_argument('--max-num-batched-tokens', type=int, default=4096, help='Max tokens can be batched by this service.') parser.add_argument('--max-num-seqs', type=int, default=8, help='Max requests can be batched by this service.') args = parser.parse_args() model_path = args.repo_id_or_model_path low_bit = args.low_bit max_num_seqs = args.max_num_seqs max_num_batched_tokens = args.max_num_batched_tokens load_model(model_path, low_bit) if local_rank == 0: uvicorn.run(app, host="0.0.0.0", port=args.port) else: while True: object_list = [None] * max_num_seqs dist.broadcast_object_list(object_list, src=0) output = generate_text([req.prompt for req in object_list], [req.n_predict for req in object_list])