# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch.distributed as dist from ipex_llm.transformers import init_pipeline_parallel, PPModelWorker from ipex_llm.serving.fastapi import FastApp from transformers.utils import logging from transformers import AutoTokenizer import uvicorn import asyncio from typing import Dict import argparse logger = logging.get_logger(__name__) init_pipeline_parallel() my_rank = dist.get_rank() my_size = dist.get_world_size() device = f"xpu:{my_rank}" logger.info(f"rank: {my_rank}, size: {my_size}") result_dict: Dict[str, str] = {} local_rank = my_rank async def main(): parser = argparse.ArgumentParser(description='Predict Tokens using fastapi by leveraging Pipeline-Parallel') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf`, `meta-llama/Llama-2-13b-chat-hf` and `meta-llama/Llama-2-70b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.') parser.add_argument('--port', type=int, default=8000, help='The port number on which the server will run.') parser.add_argument('--max-num-seqs', type=int, default=8, help='Max num sequences in a batch.') parser.add_argument('--max-prefilled-seqs', type=int, default=0, help='Max num sequences in a batch during prefilling.') args = parser.parse_args() model_path = args.repo_id_or_model_path low_bit = args.low_bit max_num_seqs = args.max_num_seqs max_prefilled_seqs = args.max_prefilled_seqs # serialize model initialization so that we do not run out of CPU memory for i in range(my_size): if my_rank == i: logger.info("start model initialization") local_model = PPModelWorker(model_path, my_rank, my_size, low_bit, max_num_seqs, max_prefilled_seqs) logger.info("model initialized") dist.barrier() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, padding_side='left') if tokenizer.pad_token is None: tokenizer.pad_token = tokenizer.eos_token myapp = FastApp(local_model, tokenizer) if local_rank == 0: config = uvicorn.Config(app=myapp.app, host="0.0.0.0", port=args.port) server = uvicorn.Server(config) await server.serve() else: while True: await asyncio.sleep(0) await local_model.process_step(tokenizer, result_dict) if __name__ == "__main__": asyncio.run(main())