# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/mit-han-lab/streaming-llm/blob/main/examples/run_streaming_llama.py # which is licensed under the MIT license: # # MIT License # # Copyright (c) 2023 MIT HAN Lab # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch import argparse import sys # todo: support more model class from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig from transformers import TextIteratorStreamer from transformers.tools.agents import StopSequenceCriteria from transformers.generation.stopping_criteria import StoppingCriteriaList from colorama import Fore from ipex_llm import optimize_model from kv_cache import StartRecentKVCache HUMAN_ID = "" BOT_ID = "" def get_stop_words_ids(chat_format, tokenizer): # https://github.com/QwenLM/Qwen/blob/main/examples/vllm_wrapper.py#L23 if chat_format == "Qwen": stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id], [tokenizer.eod_id]] # https://huggingface.co/01-ai/Yi-6B-Chat/blob/main/tokenizer_config.json#L38 elif chat_format == "Yi": stop_words_ids = [tokenizer.encode("<|im_end|>")] else: raise NotImplementedError(f"Unknown chat format {chat_format!r}") return stop_words_ids @torch.no_grad() def greedy_generate(model, tokenizer, input_ids, past_key_values, max_gen_len, stop_words=[]): print(Fore.BLUE+"IPEX-LLM: "+Fore.RESET, end="") outputs = model( input_ids=input_ids, past_key_values=past_key_values, use_cache=True, ) past_key_values = outputs.past_key_values pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1) generated_ids = [pred_token_idx.item()] pos = 0 stop = False for _ in range(max_gen_len - 1): outputs = model( input_ids=pred_token_idx, past_key_values=past_key_values, use_cache=True, ) past_key_values = outputs.past_key_values pred_token_idx = outputs.logits[:, -1, :].argmax(dim=-1).unsqueeze(1) generated_ids.append(pred_token_idx.item()) if stop_words is not None: for stop_str in stop_words: if generated_ids[-1 * len(stop_str):] == stop_str: stop = True break if stop: break generated_text = tokenizer.decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True, spaces_between_special_tokens=False) now = len(generated_text) - 1 if now > pos: if '\n<' in generated_text: break else: print("".join(generated_text[pos:now]), end="", flush=True) pos = now if pred_token_idx == tokenizer.eos_token_id: break print(" ".join(generated_text[pos:]).strip('\n<'), flush=True) return past_key_values @torch.no_grad() def stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]): past_key_values = None while True: user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) # let's stop the conversation when user input "stop" if user_input == "stop": break prompt = f"{HUMAN_ID} {user_input}\n{BOT_ID} " input_ids = tokenizer(prompt, return_tensors="pt").input_ids seq_len = input_ids.shape[1] if kv_cache is not None: space_needed = seq_len + max_gen_len past_key_values = kv_cache.evict_for_space(past_key_values, space_needed) past_key_values = greedy_generate( model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words ) @torch.no_grad() def chatglm3_stream_chat(model, tokenizer): chat_history = [] past_key_values = None current_length = 0 # https://github.com/THUDM/ChatGLM3/issues/274#issuecomment-1810160305 stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(["<|user|>", "<|observation|>"], tokenizer)]) # you could change this according to your memory requirement max_past_length = 512 block_length = 512 while True: user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) # let's stop the conversation when user input "stop" if user_input == "stop": break print(Fore.BLUE+"IPEX-LLM: "+Fore.RESET, end="") # https://github.com/THUDM/ChatGLM3/blob/main/PROMPT_en.md prompt = f""" <|system|> You are an intelligent AI assistant, named ChatGLM3. Follow the user's instructions carefully. <|user|> {user_input} <|assistant|> """ if past_key_values is not None and past_key_values[0][0].shape[0] > max_past_length + block_length: # To avoid out of memory, only keep recent key_values of max_past_length past_key_values = [(k[-max_past_length:, :, :, :], v[-max_past_length:, :, :, :]) for k, v in past_key_values] for response, chat_history, past_key_values in model.stream_chat(tokenizer, prompt, history=chat_history, stopping_criteria=stopping_criteria, past_key_values=past_key_values, return_past_key_values=True): print(response[current_length:], end="", flush=True) current_length = len(response) @torch.no_grad() def qwen_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]): past_key_values = None while True: user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) # let's stop the conversation when user input "stop" if user_input == "stop": break # https://huggingface.co/Qwen/Qwen-7B-Chat/blob/main/generation_config.json#L2 prompt = f""" <|im_start|>system You are a helpful assistant. <|im_end|> <|im_start|>user {user_input} <|im_end|> <|im_start|>assistant """ input_ids = tokenizer(prompt, return_tensors="pt").input_ids seq_len = input_ids.shape[1] if kv_cache is not None: space_needed = seq_len + max_gen_len past_key_values = kv_cache.evict_for_space(past_key_values, space_needed) past_key_values = greedy_generate( model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words ) @torch.no_grad() def llama_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]): past_key_values = None while True: user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) # let's stop the conversation when user input "stop" if user_input == "stop": break # https://huggingface.co/TheBloke/Llama-2-70B-Chat-GGML#prompt-template-llama-2-chat prompt = f""" [INST] <> You are a helpful assistant. <> {user_input}[/INST] """ input_ids = tokenizer(prompt, return_tensors="pt").input_ids seq_len = input_ids.shape[1] if kv_cache is not None: space_needed = seq_len + max_gen_len past_key_values = kv_cache.evict_for_space(past_key_values, space_needed) past_key_values = greedy_generate( model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words ) @torch.no_grad() def yi_stream_chat(model, tokenizer, kv_cache=None, max_gen_len=512, stop_words=[]): past_key_values = None while True: user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) # let's stop the conversation when user input "stop" if user_input == "stop": break # https://huggingface.co/01-ai/Yi-6B-Chat#31-use-the-chat-model prompt = f""" <|im_start|>system You are a helpful assistant. If you don't understand what the user means, ask the user to provide more information. <|im_end|> <|im_start|>user {user_input} <|im_end|> <|im_start|>assistant """ input_ids = tokenizer(prompt, return_tensors="pt").input_ids seq_len = input_ids.shape[1] if kv_cache is not None: space_needed = seq_len + max_gen_len past_key_values = kv_cache.evict_for_space(past_key_values, space_needed) past_key_values = greedy_generate( model, tokenizer, input_ids, past_key_values, max_gen_len=max_gen_len, stop_words=stop_words ) def auto_select_model(model_name): try: try: model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype="auto", trust_remote_code=True, use_cache=True) except: model = AutoModel.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype="auto", trust_remote_code=True, use_cache=True) except: print("Sorry, the model you entered is not supported in installer.") sys.exit() return model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, help="path to an llm") parser.add_argument("--start-size", type=int, default=4, help="start_size of kv_cahce") args = parser.parse_args() model_path = args.model_path start_size = args.start_size model = auto_select_model(model_path) model = optimize_model(model) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) if model.config.architectures is not None and model.config.architectures[0] == "QWenLMHeadModel": stop_words = get_stop_words_ids("Qwen", tokenizer=tokenizer) kv_cache = StartRecentKVCache(start_size=start_size, k_seq_dim=1, v_seq_dim=1) qwen_stream_chat(model=model, tokenizer=tokenizer,kv_cache=kv_cache, stop_words=stop_words) elif model.config.architectures is not None and model.config.architectures[0] == "ChatGLMModel": chatglm3_stream_chat(model=model, tokenizer=tokenizer) elif model.config.architectures is not None and model.config.architectures[0] == "LlamaForCausalLM": kv_cache = StartRecentKVCache(start_size=start_size) if "yi" in model_path.lower(): stop_words = get_stop_words_ids("Yi", tokenizer=tokenizer) yi_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache, stop_words=stop_words) else: llama_stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache) else: kv_cache = StartRecentKVCache(start_size=start_size) stream_chat(model=model, tokenizer=tokenizer, kv_cache=kv_cache)