# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This would makes sure Python is aware there is more than one sub-package within bigdl, # physically located elsewhere. # Otherwise there would be module not found error in non-pip's setting as Python would # only search the first bigdl package and end up finding only one sub-package. # Code adapted from https://python.langchain.com/docs/use_cases/chatbots/voice_assistant from langchain import LLMChain, PromptTemplate from ipex_llm.langchain.llms import TransformersLLM from langchain.memory import ConversationBufferWindowMemory from ipex_llm.transformers import AutoModelForSpeechSeq2Seq from transformers import WhisperProcessor import speech_recognition as sr import numpy as np import pyttsx3 import argparse import time english_template = """ {history} Q: {human_input} A:""" chinese_template = """{history}\n\n问:{human_input}\n\n答:""" template_dict = { "english": english_template, "chinese": chinese_template } llm_load_methods = ( TransformersLLM.from_model_id, TransformersLLM.from_model_id_low_bit, ) def prepare_chain(args): llm_model_path = args.llm_model_path # Use a easy prompt could bring good-enough result # For Chinese Prompt # template = """{history}\n\n问:{human_input}\n\n答:""" template = template_dict[args.language] prompt = PromptTemplate(input_variables=["history", "human_input"], template=template) method_index = 1 if args.directly else 0 llm = llm_load_methods[method_index]( model_id=llm_model_path, model_kwargs={"temperature": 0, "trust_remote_code": True}, ) # Following code are complete the same as the use-case voiceassitant_chain = LLMChain( llm=llm, prompt=prompt, verbose=True, llm_kwargs={"max_new_tokens":args.max_new_tokens}, memory=ConversationBufferWindowMemory(k=2), ) recog_model_path = args.recog_model_path processor = WhisperProcessor.from_pretrained(recog_model_path) recogn_model = AutoModelForSpeechSeq2Seq.from_pretrained(recog_model_path, load_in_4bit=True) recogn_model.config.forced_decoder_ids = None forced_decoder_ids = processor.get_decoder_prompt_ids(language=args.language, task="transcribe") return voiceassitant_chain, processor, recogn_model, forced_decoder_ids def listen(chain): voiceassitant_chain, processor, recogn_model, forced_decoder_ids = chain # engine = pyttsx3.init() r = sr.Recognizer() with sr.Microphone(device_index=1, sample_rate=16000) as source: print("Calibrating...") r.adjust_for_ambient_noise(source, duration=5) # optional parameters to adjust microphone sensitivity # r.energy_threshold = 200 # r.pause_threshold=0.5 print("Okay, go!") while 1: text = "" print("listening now...") try: audio = r.listen(source, timeout=5, phrase_time_limit=30) # refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63 frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0 print("Recognizing...") st = time.time() input_features = processor(frame_data, sampling_rate=audio.sample_rate, return_tensors="pt").input_features predicted_ids = recogn_model.generate(input_features, forced_decoder_ids=forced_decoder_ids) text = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] time_0 = time.time() - st except Exception as e: unrecognized_speech_text = ( f"Sorry, I didn't catch that. Exception was: \n {e}" ) text = unrecognized_speech_text st = time.time() response_text = voiceassitant_chain.predict(human_input=text, stop="\n\n") print(response_text) print(f"Recognized in {time_0}s, Predicted in {time.time() - st}s") # engine.say(response_text) # engine.runAndWait() def main(args): chain = prepare_chain(args) listen(chain) if __name__ == '__main__': parser = argparse.ArgumentParser(description='BigDL-LLM Transformer Int4 Langchain Voice Assistant Example') parser.add_argument('-r', '--recog-model-path', type=str, required=True, help="the path to the huggingface speech recognition model") parser.add_argument('-m','--llm-model-path', type=str, required=True, help='the path to the huggingface llm model') parser.add_argument('-x','--max-new-tokens', type=int, default=32, help='the max new tokens of model tokens input') parser.add_argument('-l', '--language', type=str, default="english", help='the language to be transcribed') parser.add_argument('-d', '--directly', action='store_true', help='whether to load low bit model directly') args = parser.parse_args() main(args)