# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This would makes sure Python is aware there is more than one sub-package within bigdl, # physically located elsewhere. # Otherwise there would be module not found error in non-pip's setting as Python would # only search the first bigdl package and end up finding only one sub-package. import argparse from bigdl.llm.langchain.llms import BigdlLLM from langchain import PromptTemplate, LLMChain from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler def main(args): question = args.question model_path = args.model_path model_family = args.model_family n_threads = args.thread_num template ="""{question}""" prompt = PromptTemplate(template=template, input_variables=["question"]) # Callbacks support token-wise streaming callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) # Verbose is required to pass to the callback manager llm = BigdlLLM( model_path=model_path, model_family=model_family, n_threads=n_threads, callback_manager=callback_manager, verbose=True ) llm_chain = LLMChain(prompt=prompt, llm=llm) llm_chain.run(question) if __name__ == '__main__': parser = argparse.ArgumentParser(description='BigDL-LLM Langchain Streaming Chat Example') parser.add_argument('-x','--model-family', type=str, required=True, choices=["llama", "bloom", "gptneox"], help='the model family') parser.add_argument('-m','--model-path', type=str, required=True, help='the path to the converted llm model') parser.add_argument('-q', '--question', type=str, default='What is AI?', help='qustion you want to ask.') parser.add_argument('-t','--thread-num', type=int, default=2, help='Number of threads to use for inference') args = parser.parse_args() main(args)