# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This would makes sure Python is aware there is more than one sub-package within bigdl, # physically located elsewhere. # Otherwise there would be module not found error in non-pip's setting as Python would # only search the first bigdl package and end up finding only one sub-package. import argparse from langchain.vectorstores import Chroma from langchain.chains.chat_vector_db.prompts import (CONDENSE_QUESTION_PROMPT, QA_PROMPT) from langchain.text_splitter import CharacterTextSplitter from langchain.chains.question_answering import load_qa_chain from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from bigdl.llm.langchain.llms import BigdlLLM from bigdl.llm.langchain.embeddings import BigdlLLMEmbeddings def main(args): input_path = args.input_path model_path = args.model_path model_family = args.model_family query = args.question n_ctx = args.n_ctx n_threads=args.thread_num callback_manager = CallbackManager([StreamingStdOutCallbackHandler()]) # split texts of input doc with open(input_path) as f: input_doc = f.read() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_text(input_doc) # create embeddings and store into vectordb embeddings = BigdlLLMEmbeddings(model_path=model_path, model_family=model_family, n_threads=n_threads, n_ctx=n_ctx) docsearch = Chroma.from_texts(texts, embeddings, metadatas=[{"source": str(i)} for i in range(len(texts))]).as_retriever() #get relavant texts docs = docsearch.get_relevant_documents(query) bigdl_llm = BigdlLLM( model_path=model_path, model_family=model_family, n_ctx=n_ctx, n_threads=n_threads, callback_manager=callback_manager ) doc_chain = load_qa_chain( bigdl_llm, chain_type="stuff", prompt=QA_PROMPT, callback_manager=callback_manager ) doc_chain.run(input_documents=docs, question=query) if __name__ == '__main__': parser = argparse.ArgumentParser(description='BigDL-LLM Langchain Question Answering over Docs Example') parser.add_argument('-x','--model-family', type=str, required=True, choices=["llama", "bloom", "gptneox"], help='the model family') parser.add_argument('-m','--model-path', type=str, required=True, help='the path to the converted llm model') parser.add_argument('-i', '--input-path', type=str, required=True, help='the path to the input doc.') parser.add_argument('-q', '--question', type=str, default='What is AI?', help='qustion you want to ask.') parser.add_argument('-c','--n-ctx', type=int, default=2048, help='the maximum context size') parser.add_argument('-t','--thread-num', type=int, default=2, help='number of threads to use for inference') args = parser.parse_args() main(args)