# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Python program to convert CSV to HTML Table import os import sys import argparse import pandas as pd def highlight_vals(val, max=-3.0, color='yellow'): if val < max: return 'background-color: %s' % color else: return '' def main(): parser = argparse.ArgumentParser(description="convert .csv file to .html file") parser.add_argument("-f", "--folder_path", type=str, dest="folder_path", help="The directory which stores the .csv file", default="/mnt/disk1/nightly_perf/") args = parser.parse_args() csv_files = [] for file_name in os.listdir(args.folder_path): file_path = os.path.join(args.folder_path, file_name) if os.path.isfile(file_path) and file_name.endswith(".csv"): csv_files.append(file_path) csv_files.sort(reverse=True) latest_csv = pd.read_csv(csv_files[0], index_col=0) if len(csv_files)>1: previous_csv = pd.read_csv(csv_files[1], index_col=0) last1=['']*len(latest_csv.index) diff1=['']*len(latest_csv.index) last2=['']*len(latest_csv.index) diff2=['']*len(latest_csv.index) latency_1st_token='1st token avg latency (ms)' latency_2_avg='2+ avg latency (ms/token)' for latest_csv_ind,latest_csv_row in latest_csv.iterrows(): latest_csv_model=latest_csv_row['model'].strip() latest_csv_input_output_pairs=latest_csv_row['input/output tokens'].strip() latest_1st_token_latency=latest_csv_row[latency_1st_token] latest_2_avg_latency=latest_csv_row[latency_2_avg] for previous_csv_ind,previous_csv_row in previous_csv.iterrows(): previous_csv_model=previous_csv_row['model'].strip() previous_csv_input_output_pairs=previous_csv_row['input/output tokens'].strip() if latest_csv_model==previous_csv_model and latest_csv_input_output_pairs==previous_csv_input_output_pairs: previous_1st_token_latency=previous_csv_row[latency_1st_token] previous_2_avg_latency=previous_csv_row[latency_2_avg] last1[latest_csv_ind]=previous_1st_token_latency diff1[latest_csv_ind]=round((previous_1st_token_latency-latest_1st_token_latency)*100/previous_1st_token_latency,2) last2[latest_csv_ind]=previous_2_avg_latency diff2[latest_csv_ind]=round((previous_2_avg_latency-latest_2_avg_latency)*100/previous_2_avg_latency,2) latest_csv.insert(loc=3,column='last1',value=last1) latest_csv.insert(loc=4,column='diff1(%)',value=diff1) latest_csv.insert(loc=5,column='last2',value=last2) latest_csv.insert(loc=6,column='diff2(%)',value=diff2) daily_html=csv_files[0].split(".")[0]+".html" subset=['diff1(%)','diff2(%)'] columns={'1st token avg latency (ms)': '{:.2f}', '2+ avg latency (ms/token)': '{:.2f}', 'last1': '{:.2f}', 'diff1(%)': '{:.2f}', 'last2': '{:.2f}', 'diff2(%)': '{:.2f}', 'encoder time (ms)': '{:.2f}'} with open(daily_html, 'w') as f: f.write(latest_csv.style.format(columns).applymap(highlight_vals, subset) .set_table_attributes("border=1").render()) if __name__ == "__main__": sys.exit(main())