# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file is adapted from # https://github.com/huggingface/transformers/blob/main/src/transformers/models/glm/modeling_glm.py # # which is licensed under Apache License 2.0: # # Copyright 2024 The GLM & ZhipuAI team and HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from typing import Optional, Tuple from transformers.cache_utils import Cache from transformers.models.glm.modeling_glm import apply_rotary_pos_emb from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache from ipex_llm.transformers.models.common import merge_qkv_base from ipex_llm.transformers.models.common import scaled_dot_product_attention from ipex_llm.transformers.models.utils import make_cache_contiguous_inplaced from ipex_llm.transformers.models.utils import use_quantize_kv_cache def merge_qkv(module: torch.nn.Module): merge_qkv_base(module, "GlmAttention") merge_qkv_base(module, "SiglipAttention") def split_mlp(module: torch.nn.Module): if module.__class__.__name__ == "GlmMLP": gate_weight, up_weight = module.gate_up_proj.weight.data.chunk(2, dim=0) gate_proj = torch.nn.Linear(0, 0, bias=False) gate_proj.weight = torch.nn.Parameter(gate_weight, requires_grad=False) gate_proj.in_features = gate_weight.size(1) gate_proj.out_features = gate_weight.size(0) up_proj = torch.nn.Linear(0, 0, bias=False) up_proj.weight = torch.nn.Parameter(up_weight, requires_grad=False) up_proj.in_features = up_weight.size(1) up_proj.out_features = up_weight.size(0) module.gate_proj = gate_proj module.up_proj = up_proj del module.gate_up_proj # rename activation function module.act_fn = module.activation_fn def glm_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]]=None, **kwargs, ): bsz, q_len, _ = hidden_states.size() qkv = self.qkv_proj(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=1) cos, sin = position_embeddings if query_states.device.type == "xpu": import xe_addons make_cache_contiguous_inplaced(cos, sin) xe_addons.rotary_two_with_cache_inplaced(query_states, key_states, cos, sin, True) else: query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attn_weights = None attn_output = scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, q_len == key_states.size(2), self.scaling ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def glm_model_forward_wrapper(origin_forward): def glm_model_forward( self, input_ids: torch.LongTensor = None, images: torch.Tensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ): # ipex-llm changes start # IPEX-LLM OPT: kv cache and quantize kv cache inputs = input_ids if input_ids is not None else inputs_embeds use_cache = use_cache if use_cache is not None else self.config.use_cache use_cache = use_cache or inputs.device.type == 'xpu' use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs, self.config.num_attention_heads // self.config.num_key_value_heads) if use_cache: if use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache): past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) elif not use_quantize_kv and not isinstance(past_key_values, DynamicNormalCache): past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) # ipex-llm changes end return origin_forward( self=self, input_ids=input_ids, images=images, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, **kwargs, ) return glm_model_forward