# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import torch import time import argparse import numpy as np import inquirer # For Windows users, please remove `import sounddevice` import sounddevice from bigdl.llm.transformers import AutoModelForCausalLM from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq from transformers import LlamaTokenizer from transformers import WhisperProcessor from transformers import TextStreamer from colorama import Fore import speech_recognition as sr from datasets import load_dataset # you could tune the prompt based on your own model, # here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style DEFAULT_SYSTEM_PROMPT = """\ """ def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str: texts = [f'[INST] <>\n{system_prompt}\n<>\n\n'] # The first user input is _not_ stripped do_strip = False for user_input, response in chat_history: user_input = user_input.strip() if do_strip else user_input do_strip = True texts.append(f'{user_input} [/INST] {response.strip()} [INST] ') message = message.strip() if do_strip else message texts.append(f'{message} [/INST]') return ''.join(texts) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--llama2-repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--whisper-repo-id-or-model-path', type=str, default="openai/whisper-small", help='The huggingface repo id for the Whisper (e.g. `openai/whisper-small` and `openai/whisper-medium`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() # Select device mics = sr.Microphone.list_microphone_names() mics.insert(0, "Default") questions = [ inquirer.List('device_name', message="Which microphone do you choose?", choices=mics) ] answers = inquirer.prompt(questions) device_name = answers['device_name'] idx = mics.index(device_name) device_index = None if idx == 0 else idx - 1 print(f"The device name {device_name} is selected.") whisper_model_path = args.whisper_repo_id_or_model_path llama_model_path = args.llama2_repo_id_or_model_path dataset_path = "hf-internal-testing/librispeech_asr_dummy" # Load dummy dataset and read audio files ds = load_dataset(dataset_path, "clean", split="validation") print("Converting and loading models...") processor = WhisperProcessor.from_pretrained(whisper_model_path) # generate token ids whisper = AutoModelForSpeechSeq2Seq.from_pretrained(whisper_model_path, load_in_4bit=True, optimize_model=False, use_cache=True) whisper.config.forced_decoder_ids = None whisper = whisper.to('xpu') # When running Llama models on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. llama_model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True, trust_remote_code=True, optimize_model=False, use_cache=True) llama_model = llama_model.to('xpu') tokenizer = LlamaTokenizer.from_pretrained(llama_model_path) r = sr.Recognizer() with torch.inference_mode(): # warm up sample = ds[2]["audio"] input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features input_features = input_features.contiguous().to('xpu') torch.xpu.synchronize() predicted_ids = whisper.generate(input_features) torch.xpu.synchronize() output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True) output_str = output_str[0] input_ids = tokenizer.encode(output_str, return_tensors="pt").to('xpu') output = llama_model.generate(input_ids, do_sample=False, max_new_tokens=32) output_str = tokenizer.decode(output[0], skip_special_tokens=True) torch.xpu.synchronize() with sr.Microphone(device_index=device_index, sample_rate=16000) as source: print("Calibrating...") r.adjust_for_ambient_noise(source, duration=5) while 1: print(Fore.YELLOW + "Listening now..." + Fore.RESET) try: audio = r.listen(source, timeout=5, phrase_time_limit=30) # refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63 frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0 print("Recognizing...") input_features = processor(frame_data, sampling_rate=audio.sample_rate, return_tensors="pt").input_features input_features = input_features.contiguous().to('xpu') except Exception as e: unrecognized_speech_text = ( f"Sorry, I didn't catch that. Exception was: \n {e}" ) print(unrecognized_speech_text) predicted_ids = whisper.generate(input_features) output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True) output_str = output_str[0] print("\n" + Fore.GREEN + "Whisper : " + Fore.RESET + "\n" + output_str) print("\n" + Fore.BLUE + "BigDL-LLM: " + Fore.RESET) prompt = get_prompt(output_str, [], system_prompt=DEFAULT_SYSTEM_PROMPT) input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') streamer = TextStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True) _ = llama_model.generate(input_ids, streamer=streamer, do_sample=False, max_new_tokens=args.n_predict)