# Use `torch.distributed` in Orca --- ![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/branch-2.0/python/orca/colab-notebook/quickstart/pytorch_distributed_lenet_mnist.ipynb)  ![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/branch-2.0/python/orca/colab-notebook/quickstart/pytorch_distributed_lenet_mnist.ipynb) --- **In this guide we will describe how to scale out _PyTorch_ programs using the `torch.distributed` package in Orca.** ### **Step 0: Prepare Environment** [Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](../../UserGuide/python.md) for more details. ```bash conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like. conda activate py37 pip install bigdl-orca[ray] pip install torch==1.7.1 torchvision==0.8.2 ``` ### **Step 1: Init Orca Context** ```python from bigdl.orca import init_orca_context, stop_orca_context if cluster_mode == "local": # For local machine init_orca_context(cores=4, memory="10g") elif cluster_mode == "k8s": # For K8s cluster init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2, memory="10g", driver_memory="10g", driver_cores=1) elif cluster_mode == "yarn": # For Hadoop/YARN cluster init_orca_context(cluster_mode="yarn", cores=2, num_nodes=2, memory="10g", driver_memory="10g", driver_cores=1) ``` This is the only place where you need to specify local or distributed mode. View [Orca Context](./../Overview/orca-context.md) for more details. **Note:** You should `export HADOOP_CONF_DIR=/path/to/hadoop/conf/dir` when running on Hadoop YARN cluster. View [Hadoop User Guide](./../../UserGuide/hadoop.md) for more details. ### **Step 2: Define the Model** You may define your model, loss and optimizer in the same way as in any standard (single node) PyTorch program. ```python import torch import torch.nn as nn import torch.nn.functional as F class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5, 1) self.conv2 = nn.Conv2d(20, 50, 5, 1) self.fc1 = nn.Linear(4*4*50, 500) self.fc2 = nn.Linear(500, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2, 2) x = x.view(-1, 4*4*50) x = F.relu(self.fc1(x)) x = self.fc2(x) return F.log_softmax(x, dim=1) criterion = nn.NLLLoss() ``` After defining your model, you need to define a *Model Creator Function* that returns an instance of your model, and a *Optimizer Creator Function* that returns a PyTorch optimizer. ```python def model_creator(config): model = LeNet() return model def optim_creator(model, config): return torch.optim.Adam(model.parameters(), lr=0.001) ``` ### **Step 3: Define Train Dataset** You can define the dataset using a *Data Creator Function* that returns a PyTorch `DataLoader`. Orca also supports [Orca SparkXShards](../Overview/data-parallel-processing). ```python import torch from torchvision import datasets, transforms torch.manual_seed(0) batch_size = 320 test_batch_size = 320 dir = './dataset' def train_loader_creator(config, batch_size): train_loader = torch.utils.data.DataLoader( datasets.MNIST(dir, train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=batch_size, shuffle=True) return train_loader def test_loader_creator(config, batch_size): test_loader = torch.utils.data.DataLoader( datasets.MNIST(dir, train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=batch_size, shuffle=False) return test_loader ``` ### **Step 4: Fit with Orca Estimator** First, Create an Estimator ```python from bigdl.orca.learn.pytorch import Estimator from bigdl.orca.learn.metrics import Accuracy est = Estimator.from_torch(model=model_creator, optimizer=optim_creator, loss=criterion, metrics=[Accuracy()], backend="torch_distributed") ``` Next, fit and evaluate using the Estimator ```python est.fit(data=train_loader_creator, epochs=1, batch_size=batch_size) result = est.evaluate(data=test_loader_creator, batch_size=test_batch_size) for r in result: print(r, ":", result[r]) ``` **Note:** You should call `stop_orca_context()` when your application finishes.