# Llama2 In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama2-32K models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [togethercomputer/Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct) as reference Llama2-32K models. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. ### 1. Install #### 1.1 Installation on Linux We suggest using conda to manage environment: ```bash conda create -n llm python=3.9 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ ``` #### 1.2 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.9 libuv conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ ``` ### 2. Configures OneAPI environment variables #### 2.1 Configurations for Linux ```bash source /opt/intel/oneapi/setvars.sh ``` #### 2.2 Configurations for Windows ```cmd call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat" ``` > Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported. ### 3. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. #### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 ```
For Intel Data Center GPU Max Series ```bash export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export ENABLE_SDP_FUSION=1 ``` > Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
#### 3.2 Configurations for Windows
For Intel iGPU ```cmd set SYCL_CACHE_PERSISTENT=1 set BIGDL_LLM_XMX_DISABLED=1 ```
For Intel Arc™ A300-Series or Pro A60 ```cmd set SYCL_CACHE_PERSISTENT=1 ```
For other Intel dGPU Series There is no need to set further environment variables.
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running examples #### 4.1 Using simple prompt ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `togethercomputer/Llama-2-7B-32K-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'togethercomputer/Llama-2-7B-32K-Instruct'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. #### 4.2 Using 8k input size prompt You can set the `prompt` argument to be a `.txt` file path containing the 8k size prompt text. An example command using the 8k input size prompt we provide is given below: ``` python ./generate.py --repo-id-or-model-path togethercomputer/Llama-2-7B-32K-Instruct --prompt 8k.txt ``` > Note: If you need to use less memory, please set `IPEX_LLM_LOW_MEM=1`, which will enable memory optimization and may slightly affect the latency performance. #### Sample Output #### [togethercomputer/Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct) ```log Inference time: xxxx s -------------------- Prompt -------------------- [INST] <> <> What is AI? [/INST] -------------------- Output -------------------- [INST] <> <> What is AI? [/INST] AI is a broad field of study that deals with the creation of intelligent agents, which are systems that can perform tasks that typically require human intelligence ```