# Llama2
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on Llama2-32K models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [togethercomputer/Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct) as reference Llama2-32K models.
## 0. Requirements
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Llama2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
### 1. Install
#### 1.1 Installation on Linux
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
#### 1.2 Installation on Windows
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9 libuv
conda activate llm
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
```
### 2. Configures OneAPI environment variables
#### 2.1 Configurations for Linux
```bash
source /opt/intel/oneapi/setvars.sh
```
#### 2.2 Configurations for Windows
```cmd
call "C:\Program Files (x86)\Intel\oneAPI\setvars.bat"
```
> Note: Please make sure you are using **CMD** (**Anaconda Prompt** if using conda) to run the command as PowerShell is not supported.
### 3. Runtime Configurations
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
#### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
For Intel Data Center GPU Max Series
```bash
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
export ENABLE_SDP_FUSION=1
```
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
#### 3.2 Configurations for Windows
For Intel iGPU
```cmd
set SYCL_CACHE_PERSISTENT=1
set BIGDL_LLM_XMX_DISABLED=1
```
For Intel Arc™ A300-Series or Pro A60
```cmd
set SYCL_CACHE_PERSISTENT=1
```
For other Intel dGPU Series
There is no need to set further environment variables.
> Note: For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
### 4. Running examples
#### 4.1 Using simple prompt
```
python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT
```
Arguments info:
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `togethercomputer/Llama-2-7B-32K-Instruct`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'togethercomputer/Llama-2-7B-32K-Instruct'`.
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### 4.2 Using 8k input size prompt
You can set the `prompt` argument to be a `.txt` file path containing the 8k size prompt text. An example command using the 8k input size prompt we provide is given below:
```
python ./generate.py --repo-id-or-model-path togethercomputer/Llama-2-7B-32K-Instruct --prompt 8k.txt
```
> Note: If you need to use less memory, please set `IPEX_LLM_LOW_MEM=1`, which will enable memory optimization and may slightly affect the latency performance.
#### Sample Output
#### [togethercomputer/Llama-2-7B-32K-Instruct](https://huggingface.co/togethercomputer/Llama-2-7B-32K-Instruct)
```log
Inference time: xxxx s
-------------------- Prompt --------------------
[INST] <>
<>
What is AI? [/INST]
-------------------- Output --------------------
[INST] <>
<>
What is AI? [/INST]
AI is a broad field of study that deals with the creation of intelligent agents, which are systems that can perform tasks that typically require human intelligence
```