# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import time import torch import argparse import requests from PIL import Image from ipex_llm.transformers import AutoModelForCausalLM from transformers import AutoTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for THUDM/glm-4v-9b model') parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/glm-4v-9b", help='The huggingface repo id for the THUDM/glm-4v-9b model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--image-url-or-path', type=str, default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', help='The URL or path to the image to infer') parser.add_argument('--prompt', type=str, default="What is in the image?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path image_path = args.image_url_or_path # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True, use_cache=True).half().to('xpu') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) query = args.prompt if os.path.exists(image_path): image = Image.open(image_path) else: image = Image.open(requests.get(image_path, stream=True).raw) # here the prompt tuning refers to https://huggingface.co/THUDM/glm-4v-9b/blob/main/README.md inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}], add_generation_prompt=True, tokenize=True, return_tensors="pt", return_dict=True) # chat mode inputs = inputs.to('xpu') # Generate predicted tokens with torch.inference_mode(): gen_kwargs = {"max_length": args.n_predict, "do_sample": True, "top_k": 1} st = time.time() outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] end = time.time() print(f'Inference time: {end-st} s') output_str = tokenizer.decode(outputs[0]) print('-'*20, 'Output', '-'*20) print(output_str)