# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py # coding=utf-8 # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ PyTorch Mixtral model.""" import math from typing import Optional, Tuple, Union, List from transformers.modeling_outputs import MoeModelOutputWithPast from transformers.cache_utils import Cache, DynamicCache from transformers.modeling_attn_mask_utils import ( _prepare_4d_causal_attention_mask, ) import torch from torch import nn import torch.nn.functional as F from ipex_llm.ggml.quantize import ggml_tensor_qtype from ipex_llm.utils.common import invalidInputError from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache from ipex_llm.transformers.models.utils import apply_rotary_pos_emb,\ apply_rotary_pos_emb_cache_freq_xpu, is_enough_kv_cache_room_4_36 from ipex_llm.transformers.models.mistral import should_use_fuse_rope from ipex_llm.transformers.models.utils import use_decoding_fast_path from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU from ipex_llm.transformers.low_bit_linear import IQ2_XXS import os KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def mixtral_moeblock_forward(self, hidden_states: torch.Tensor): batch_size, sequence_length, hidden_dim = hidden_states.shape hidden_states = hidden_states.view(-1, hidden_dim) bs = hidden_states.shape[0] # router_logits: (batch * sequence_length, n_experts) router_logits = self.gate(hidden_states) routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float) routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1) routing_weights /= routing_weights.sum(dim=-1, keepdim=True) # we cast back to the input dtype routing_weights = routing_weights.to(hidden_states.dtype) if bs == 1: selected_experts = selected_experts[0].cpu().tolist() for idx in range(self.top_k): exp_id = selected_experts[idx] expert_layer = self.experts[exp_id] weight = routing_weights[:, idx] if idx == 0: final_hidden_states = expert_layer(hidden_states, weight) else: final_hidden_states = final_hidden_states + expert_layer(hidden_states, weight) elif bs < 256 and hidden_states.device.type == 'xpu': final_hidden_states = torch.zeros((batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device) import xe_linear indexes = xe_linear.get_moe_indexes(selected_experts.to(torch.int32).cpu(), 8) for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx_list = indexes[0][expert_idx] top_x_list = indexes[1][expert_idx] if len(idx_list) == 0: continue top_x = torch.tensor(top_x_list, dtype=torch.long, device=hidden_states.device) current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state, routing_weights[top_x_list, idx_list, None]) final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) else: final_hidden_states = torch.zeros( (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device ) # One hot encode the selected experts to create an expert mask # this will be used to easily index which expert is going to be sollicitated expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0) # Loop over all available experts in the model and perform the computation on each expert for expert_idx in range(self.num_experts): expert_layer = self.experts[expert_idx] idx, top_x = torch.where(expert_mask[expert_idx]) if top_x.shape[0] == 0: continue # in torch it is faster to index using lists than torch tensors top_x_list = top_x.tolist() idx_list = idx.tolist() # Index the correct hidden states and compute the expert hidden state for # the current expert. We need to make sure to multiply the output hidden # states by `routing_weights` on the corresponding tokens (top-1 and top-2) current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim) current_hidden_states = expert_layer(current_state, routing_weights[top_x_list, idx_list, None]) # However `index_add_` only support torch tensors for indexing so we'll use # the `top_x` tensor here. final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype)) final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim) return final_hidden_states, router_logits def mixtral_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor]=None, position_ids: Optional[torch.LongTensor]=None, past_key_value: Optional[Tuple[torch.Tensor]]=None, output_attentions: bool=False, use_cache: bool=False, padding_mask: Optional[torch.Tensor]=None, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device # for flash attention original_dtype = hidden_states.dtype use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx) decoding_fast_path = use_decoding_fast_path(self.q_proj, use_fuse_rope, enough_kv_room, bsz * q_len) if decoding_fast_path: hidden_states = hidden_states.view(1, -1) cache_k = past_key_value.key_cache[self.layer_idx] cache_v = past_key_value.value_cache[self.layer_idx] kv_seq_len = cache_k.shape[-2] import xe_linear query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states, self.q_proj.weight, self.k_proj.weight, self.v_proj.weight, position_ids, cache_k, cache_v, self.q_proj.weight.qtype, self.v_proj.weight.qtype, kv_seq_len, self.head_dim, self.rotary_emb.base,) kv_seq_len += 1 # update past_key_value's seem_tokens and kv caches. if self.layer_idx == 0: past_key_value.seen_tokens = kv_seq_len past_key_value.key_cache[self.layer_idx] = key_states past_key_value.value_cache[self.layer_idx] = value_states # diasble it for now as it will cause output change for unknown reason # elif decoding_fast_path and self.q_proj.qtype == IQ2_XXS: # # this path self.v_proj use q4_0 # hidden_states = hidden_states.view(1, -1) # cache_k = past_key_value.key_cache[self.layer_idx] # cache_v = past_key_value.value_cache[self.layer_idx] # kv_seq_len = cache_k.shape[-2] # import xe_linear # query_states, key_states = xe_linear.forward_qk(hidden_states, # self.q_proj.weight, # self.k_proj.weight, # position_ids, # cache_k, # self.q_proj.weight.qtype, # kv_seq_len, # self.head_dim, # 10000) # kv_seq_len += 1 # # update past_key_value's seem_tokens and kv caches. # if self.layer_idx == 0: # past_key_value.seen_tokens = kv_seq_len # # update value_states # value_states = self.v_proj(hidden_states) # value_states = value_states.view(bsz, q_len, # self.num_key_value_heads, self.head_dim).transpose(1, 2) # new_size = (cache_v.size(0), # cache_v.size(1), # cache_v.size(2) + value_states.size(2), # cache_v.size(3)) # new_cache_v = cache_v.as_strided(new_size, cache_v.stride(), storage_offset=0) # new_cache_v[:, :, cache_v.size(2):cache_v.size(2)+value_states.size(2), :] = value_states # past_key_value.key_cache[self.layer_idx] = key_states # past_key_value.value_cache[self.layer_idx] = new_cache_v else: query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) kv_seq_len = key_states.shape[-2] if past_key_value is not None: if self.layer_idx is None: invalidInputError(False, "The cache structure has changed since version v4.36. " f"If you are using {self.__class__.__name__} for " "auto-regressive decodingwith k/v caching, please make sure " "to initialize the attention class with a layer index.") kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) if use_fuse_rope: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) cos = cos.squeeze(1).squeeze(0) # [seq_len, dim] sin = sin.squeeze(1).squeeze(0) # [seq_len, dim] cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim] query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states, key_states, sin, cos, "mixtral") else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, "mixtral") if past_key_value is not None: # update the number of seen tokens if self.layer_idx == 0: past_key_value.seen_tokens += key_states.shape[-2] # reuse k, v, self_attention # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx` if len(past_key_value.key_cache) <= self.layer_idx: past_key_value.key_cache.append(key_states) past_key_value.value_cache.append(value_states) else: cache_k = past_key_value.key_cache[self.layer_idx] cache_v = past_key_value.value_cache[self.layer_idx] if not enough_kv_room: # allocate new new_c_k, new_c_v = extend_kv_cache(bsz, self.num_key_value_heads, # Support GQA self.head_dim, cache_k.size(2), kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH, dtype=cache_k.dtype, device=device) new_c_k[:] = cache_k new_c_v[:] = cache_v cache_k = new_c_k cache_v = new_c_v key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states) # update past_key_value past_key_value.key_cache[self.layer_idx] = key_states past_key_value.value_cache[self.layer_idx] = value_states if not self.training and not hidden_states.requires_grad: fsdp_flag = use_flash_attention(query_states, key_states) else: fsdp_flag = False if fsdp_flag: attention_dtype = torch.float16 # use fp16 for flash attention else: attention_dtype = original_dtype # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, self.num_key_value_groups).to(device, dtype=attention_dtype) value_states = repeat_kv(value_states, self.num_key_value_groups).to(device, dtype=attention_dtype) if fsdp_flag: attn_output = F.scaled_dot_product_attention(query_states.to(dtype=attention_dtype), key_states, value_states, is_causal=True) attn_weights = None elif use_sdp(query_states.shape[2], key_states.shape[2], self.head_dim, query_states): import xe_addons attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask) attn_output = attn_output.view(query_states.shape) attn_weights = None else: attn_weights = torch.matmul( query_states.to(key_states.dtype), key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): invalidInputError( False, f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}," f" but is {attn_weights.size()}" ) if attention_mask is not None: if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): invalidInputError( False, f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}," f" but is {attention_mask.size()}" ) attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = nn.functional.\ softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) attn_output = torch.matmul(attn_weights, value_states) if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): invalidInputError( False, f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}," f" but is {attn_output.size()}" ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def mixtral_mlp_forward( self, x: torch.Tensor, routing_weights ) -> torch.Tensor: qtype = getattr(self.w1, "qtype", None) if mlp_fusion_check(x, qtype, self.training) and not self.w1.enable_xetla: import xe_linear return self.w2(xe_linear.mlp_forward_xpu( x, self.w1.weight.data, self.w3.weight.data, x.shape[0], x.shape[1], self.w1.out_len, SILU, qtype, )) * routing_weights else: current_hidden_states = self.act_fn(self.w1(x)) * self.w3(x) current_hidden_states = self.w2(current_hidden_states) return routing_weights * current_hidden_states def mixtral_model_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, output_router_logits: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, MoeModelOutputWithPast]: # to be compatible with transformers>=4.37.0 self._use_flash_attention_2 = self.config._attn_implementation == "flash_attention_2" output_attentions = output_attentions if output_attentions is not None \ else self.config.output_attentions output_router_logits = ( output_router_logits if output_router_logits is not None else self.config.output_router_logits ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # retrieve input_ids and inputs_embeds if input_ids is not None and inputs_embeds is not None: invalidInputError(False, "You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") # noqa elif input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: invalidInputError(False, "You have to specify either decoder_input_ids or decoder_inputs_embeds") # noqa past_key_values_length = 0 if use_cache: use_legacy_cache = not isinstance(past_key_values, Cache) if use_legacy_cache: past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_key_values_length = past_key_values.get_usable_length(seq_length) if position_ids is None: device = input_ids.device if input_ids is not None else inputs_embeds.device position_ids = torch.arange( past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device ) position_ids = position_ids.unsqueeze(0).view(-1, seq_length) else: position_ids = position_ids.view(-1, seq_length).long() if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if attention_mask is not None and self._use_flash_attention_2 and use_cache: is_padding_right = attention_mask[:, -1].sum().item() != batch_size if is_padding_right: invalidInputError( False, "You are attempting to perform batched generation with padding_side='right'" " this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to " # noqa " call `tokenizer.padding_side = 'left'` before tokenizing the input. " ) if self._use_flash_attention_2: # 2d mask is passed through the layers attention_mask = attention_mask \ if (attention_mask is not None and 0 in attention_mask) else None else: # 4d mask is passed through the layers attention_mask = _prepare_4d_causal_attention_mask( attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length, sliding_window=self.config.sliding_window, ) hidden_states = inputs_embeds if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." # noqa ) use_cache = False # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_router_logits = () if output_router_logits else None next_decoder_cache = None for decoder_layer in self.layers: if output_hidden_states: all_hidden_states += (hidden_states,) if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( decoder_layer.__call__, hidden_states, attention_mask, position_ids, past_key_values, output_attentions, output_router_logits, use_cache, ) else: # bigdl-llm changes: # # Avoid moving `attention_mask`` and `position_ids`` to other devices multiple times. # # When the model is partitioned on two different devices using # `accelerate`'s `dispatch``, a hook to move inputs to the correct device is # added to each layer's `forward``, which will result in moving `attention_mask` # and `position_ids`, which allocated on device:0, to other devices for each # decoder layer not in device:0. # # To avoid this, we move `attention_mask` and `position_ids` to the device of # the current layer before the forward call, so that the moving is only done once # for each devices other than devie:0. # curr_device = decoder_layer.input_layernorm.weight.device if attention_mask is not None: attention_mask = attention_mask.to(curr_device) if position_ids is not None: position_ids = position_ids.to(curr_device) # bigdl-llm changes end layer_outputs = decoder_layer( hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, output_attentions=output_attentions, output_router_logits=output_router_logits, use_cache=use_cache, ) hidden_states = layer_outputs[0] if use_cache: next_decoder_cache = layer_outputs[2 if output_attentions else 1] if output_attentions: all_self_attns += (layer_outputs[1],) if output_router_logits: all_router_logits += (layer_outputs[-1],) hidden_states = self.norm(hidden_states) # add hidden states from the last decoder layer if output_hidden_states: all_hidden_states += (hidden_states,) next_cache = None if use_cache: next_cache = next_decoder_cache.to_legacy_cache() \ if use_legacy_cache else next_decoder_cache if not return_dict: return tuple( v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits] # noqa if v is not None ) return MoeModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, router_logits=all_router_logits, )