# All in One Benchmark Test All in one benchmark test allows users to test all the benchmarks and record them in a result CSV. Users can provide models and related information in `config.yaml`. Before running, make sure to have [ipex-llm](../../../../../README.md) installed. ## Dependencies ```bash pip install omegaconf pip install pandas ``` Install gperftools to use libtcmalloc.so for MAX GPU to get better performance: ```bash conda install -c conda-forge -y gperftools=2.10 ``` ## Config Config YAML file has following format ```yaml repo_id: # - 'THUDM/chatglm2-6b' - 'meta-llama/Llama-2-7b-chat-hf' # - 'liuhaotian/llava-v1.5-7b' # requires a LLAVA_REPO_DIR env variables pointing to the llava dir; added only for gpu win related test_api now local_model_hub: 'path to your local model hub' warm_up: 1 # must set >=2 when run "pipeline_parallel_gpu" test_api num_trials: 3 num_beams: 1 # default to greedy search low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4) batch_size: 1 # default to 1 in_out_pairs: - '32-32' - '1024-128' test_api: - "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16) # - "transformer_int4_fp16_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16) # - "transformer_int4_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp32) # - "transformer_int4_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp32) # - "transformer_int4_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model # - "transformer_int4_fp16_loadlowbit_gpu_win" # on Intel GPU for Windows, transformer-like API, (qtype=int4), (dtype=fp16), use load_low_bit API. Please make sure you have used the save.py to save the converted low bit model # - "bigdl_fp16_gpu" # on Intel GPU, use ipex-llm transformers API, (dtype=fp16), (qtype=fp16) # - "optimize_model_gpu" # on Intel GPU, can optimize any pytorch models include transformer model # - "deepspeed_optimize_model_gpu" # on Intel GPU, deepspeed autotp inference # - "pipeline_parallel_gpu" # on Intel GPU, pipeline parallel inference # - "speculative_gpu" # on Intel GPU, inference with self-speculative decoding # - "transformer_int4" # on Intel CPU, transformer-like API, (qtype=int4) # - "native_int4" # on Intel CPU # - "optimize_model" # on Intel CPU, can optimize any pytorch models include transformer model # - "pytorch_autocast_bf16" # on Intel CPU # - "transformer_autocast_bf16" # on Intel CPU # - "bigdl_ipex_bf16" # on Intel CPU, (qtype=bf16) # - "bigdl_ipex_int4" # on Intel CPU, (qtype=int4) # - "bigdl_ipex_int8" # on Intel CPU, (qtype=int8) # - "speculative_cpu" # on Intel CPU, inference with self-speculative decoding # - "deepspeed_transformer_int4_cpu" # on Intel CPU, deepspeed autotp inference cpu_embedding: False # whether put embedding to CPU streaming: False # whether output in streaming way (only available now for gpu win related test_api) use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api) task: 'continuation' # task can be 'continuation', 'QA' and 'summarize' ``` ## (Optional) Save model in low bit If you choose the `transformer_int4_loadlowbit_gpu_win` or `transformer_int4_fp16_loadlowbit_gpu_win` test API, you will need to save the model in low bit first. Run `python save.py` will save all models declared in `repo_id` list into low bit models under `local_model_hub` folder. ## Run run `python run.py`, this will output results to `results.csv`. For SPR performance, run `bash run-spr.sh`. > **Note** > > The value of `OMP_NUM_THREADS` should be the same as the cpu cores specified by `numactl -C`. > **Note** > > Please install torch nightly version to avoid `Illegal instruction (core dumped)` issue, you can follow the following command to install: `pip install --pre --upgrade torch --index-url https://download.pytorch.org/whl/nightly/cpu` For ARC performance, run `bash run-arc.sh`. For MAX GPU performance, run `bash run-max-gpu.sh`.