# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from ipex_llm import optimize_model from ipex_llm.optimize import low_memory_init, load_low_bit from transformers import AutoModelForCausalLM, LlamaTokenizer # you could tune the prompt based on your own model, # here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style LLAMA2_PROMPT_FORMAT = """### HUMAN: {prompt} ### RESPONSE: """ if __name__ == '__main__': parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--low-bit', type=str, default="sym_int4", choices=['sym_int4', 'asym_int4', 'sym_int5', 'asym_int5', 'sym_int8'], help='The quantization type the model will convert to.') parser.add_argument('--save-path', type=str, default=None, help='The path to save the low-bit model.') parser.add_argument('--load-path', type=str, default=None, help='The path to load the low-bit model.') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path low_bit = args.low_bit load_path = args.load_path if load_path: # Fast and low cost by loading model on meta device with low_memory_init(): model = AutoModelForCausalLM.from_pretrained(load_path, torch_dtype="auto", trust_remote_code=True) model = load_low_bit(model, load_path) tokenizer = LlamaTokenizer.from_pretrained(load_path) else: model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) model = optimize_model(model, low_bit=low_bit) tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt") st = time.time() output = model.generate(input_ids, max_new_tokens=args.n_predict) end = time.time() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Output', '-'*20) print(output_str) save_path = args.save_path if save_path: model.save_low_bit(save_path) tokenizer.save_pretrained(save_path) print(f"Model and tokenizer are saved to {save_path}")