# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch from ipex_llm.transformers.models.common import scaled_dot_product_attention from ipex_llm.transformers.models.utils import use_sdp_non_causal def gpt2_attention_attn( self, query, key, value, attention_mask=None, head_mask=None ): # ipex-llm changes start if ( self.scale_attn_weights and not self.scale_attn_by_inverse_layer_idx and head_mask is None and query.size(-2) == key.size(-2) and use_sdp_non_causal(query.size(-1), query.device, query.dtype) ): if not self.is_cross_attention: seq_len = query.size(-2) causal_mask = self.bias[:, :, :seq_len, :seq_len] mask_value = torch.finfo(query.dtype).min mask_value = torch.full([], mask_value, dtype=query.dtype, device=query.device) attention_mask = attention_mask.expand(-1, -1, seq_len, seq_len) attention_mask = torch.where(causal_mask, attention_mask, mask_value) else: attention_mask = attention_mask.expand(-1, -1, seq_len, seq_len) attn_weights = None attn_output = scaled_dot_product_attention( query, key.contiguous(), value.contiguous(), attention_mask, False ) return attn_output, attn_weights # ipex-llm changes end attn_weights = torch.matmul(query, key.transpose(-1, -2)) if self.scale_attn_weights: attn_weights = attn_weights / torch.full( [], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device ) # Layer-wise attention scaling if self.scale_attn_by_inverse_layer_idx: attn_weights = attn_weights / float(self.layer_idx + 1) if not self.is_cross_attention: # if only "normal" attention layer implements causal mask query_length, key_length = query.size(-2), key.size(-2) causal_mask = self.bias[:, :, key_length - query_length:key_length, :key_length] mask_value = torch.finfo(attn_weights.dtype).min mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device) attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value) if attention_mask is not None: # Apply the attention mask attn_weights = attn_weights + attention_mask attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) # Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise attn_weights = attn_weights.type(value.dtype) attn_weights = self.attn_dropout(attn_weights) # Mask heads if we want to if head_mask is not None: attn_weights = attn_weights * head_mask attn_output = torch.matmul(attn_weights, value) return attn_output, attn_weights