# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import torch import time import argparse from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM from transformers import AutoTokenizer from transformers.utils import logging import requests from PIL import Image logger = logging.get_logger(__name__) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Predict Tokens using `chat()` API for npu model" ) parser.add_argument( "--repo-id-or-model-path", type=str, default="openbmb/MiniCPM-Llama3-V-2_5", help="The huggingface repo id for the MiniCPM-Llama3-V-2_5 model to be downloaded" ", or the path to the huggingface checkpoint folder", ) parser.add_argument('--image-url-or-path', type=str, default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', help='The URL or path to the image to infer') parser.add_argument('--prompt', type=str, default="What is in the image?", help='Prompt to infer') parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict") parser.add_argument("--max-output-len", type=int, default=1024) parser.add_argument("--max-prompt-len", type=int, default=512) parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False) parser.add_argument("--intra-pp", type=int, default=2) parser.add_argument("--inter-pp", type=int, default=2) args = parser.parse_args() model_path = args.repo_id_or_model_path model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float32, trust_remote_code=True, attn_implementation="eager", load_in_low_bit="sym_int4", optimize_model=True, max_output_len=args.max_output_len, max_prompt_len=args.max_prompt_len, intra_pp=args.intra_pp, inter_pp=args.inter_pp, transpose_value_cache=not args.disable_transpose_value_cache, ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) print("-" * 80) print("done") msgs = [{'role': 'user', 'content': args.prompt}] image_path = args.image_url_or_path if os.path.exists(image_path): image = Image.open(image_path).convert('RGB') else: image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB') st = time.time() res = model.chat( image=image, msgs=msgs, tokenizer=tokenizer, sampling=True, temperature=0.7, # system_prompt='' # pass system_prompt if needed ) end = time.time() print(f'Inference time: {end-st} s') print('-'*20, 'Input', '-'*20) print(image_path) print('-'*20, 'Prompt', '-'*20) print(args.prompt) output_str = res print('-'*20, 'Output', '-'*20) print(output_str) print("done") print("success shut down")