# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from ipex_llm.transformers.npu_model import AutoModelForCausalLM from transformers import AutoTokenizer from ipex_llm.utils.common.log4Error import invalidInputError # you could tune the prompt based on your own model, LLAMA2_PROMPT_FORMAT = """ [INST] <> <> {prompt} [/INST] """ if __name__ == '__main__': parser = argparse.ArgumentParser(description='Example of saving and loading the optimized model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--save-directory', type=str, default=None, help='The path to save the low-bit model.') parser.add_argument('--load-directory', type=str, default=None, help='The path to load the low-bit model.') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument("--max-context-len", type=int, default=1024) parser.add_argument("--max-prompt-len", type=int, default=512) parser.add_argument('--low-bit', type=str, default="sym_int4", help='Low bit optimizations that will be applied to the model.') args = parser.parse_args() model_path = args.repo_id_or_model_path save_directory = args.save_directory load_directory = args.load_directory if save_directory: # first time to load and save model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype=torch.float16, trust_remote_code=True, attn_implementation="eager", load_in_low_bit=args.low_bit, optimize_model=True, max_context_len=args.max_context_len, max_prompt_len=args.max_prompt_len, save_directory=save_directory ) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) tokenizer.save_pretrained(save_directory) print(f"Finish to load model from {model_path} and save to {save_directory}") elif load_directory: # load low-bit model model = AutoModelForCausalLM.load_low_bit( load_directory, attn_implementation="eager", torch_dtype=torch.float16, optimize_model=True, max_context_len=args.max_context_len, max_prompt_len=args.max_prompt_len ) tokenizer = AutoTokenizer.from_pretrained(load_directory, trust_remote_code=True) print(f"Finish to load model from {load_directory}") else: invalidInputError(False, "Both `--save-directory` and `--load-directory` are None, please provide one of this.") # Generate predicted tokens with torch.inference_mode(): for i in range(3): prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt) _input_ids = tokenizer.encode(prompt, return_tensors="pt") st = time.time() output = model.generate( _input_ids, num_beams=1, do_sample=False, max_new_tokens=args.n_predict ) end = time.time() print(f"Inference time: {end-st} s") input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False) print("-" * 20, "Input", "-" * 20) print(input_str) output_str = tokenizer.decode(output[0], skip_special_tokens=False) print("-" * 20, "Output", "-" * 20) print(output_str)