# Finetune LLM with Axolotl on Intel GPU [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) is a popular tool designed to streamline the fine-tuning of various AI models, offering support for multiple configurations and architectures. You can now use [`ipex-llm`](https://github.com/intel-analytics/ipex-llm) as an accelerated backend for `Axolotl` running on Intel **GPU** *(e.g., local PC with iGPU, discrete GPU such as Arc, Flex and Max)*. See the demo of finetuning LLaMA2-7B on Intel Arc GPU below.
You could also click here to watch the demo video.
## Table of Contents - [Prerequisites](./axolotl_quickstart.md#0-prerequisites) - [Install IPEX-LLM for Axolotl](./axolotl_quickstart.md#1-install-ipex-llm-for-axolotl) - [Example: Finetune Llama-2-7B with Axolotl](./axolotl_quickstart.md#2-example-finetune-llama-2-7b-with-axolotl) - [Finetune Llama-3-8B (Experimental)](./axolotl_quickstart.md#3-finetune-llama-3-8b-experimental) - [Troubleshooting](./axolotl_quickstart.md#troubleshooting) ## Quickstart ### 0. Prerequisites IPEX-LLM's support for [Axolotl v0.4.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0) is only available for Linux system. We recommend Ubuntu 20.04 or later (Ubuntu 22.04 is preferred). Visit the [Install IPEX-LLM on Linux with Intel GPU](./install_linux_gpu.md), follow [Install Intel GPU Driver](./install_linux_gpu.md#install-gpu-driver) and [Install oneAPI](./install_linux_gpu.md#install-oneapi) to install GPU driver and IntelĀ® oneAPI Base Toolkit 2024.0. ### 1. Install IPEX-LLM for Axolotl Create a new conda env, and install `ipex-llm[xpu]`. ```bash conda create -n axolotl python=3.11 conda activate axolotl # install ipex-llm pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ ``` Install [axolotl v0.4.0](https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0) from git. ```bash # install axolotl v0.4.0 git clone https://github.com/OpenAccess-AI-Collective/axolotl/tree/v0.4.0 cd axolotl # replace requirements.txt remove requirements.txt wget -O requirements.txt https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/requirements-xpu.txt pip install -e . pip install transformers==4.36.0 # to avoid https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544 pip install datasets==2.15.0 # prepare axolotl entrypoints wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/finetune.py wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/train.py ``` **After the installation, you should have created a conda environment, named `axolotl` for instance, for running `Axolotl` commands with IPEX-LLM.** ### 2. Example: Finetune Llama-2-7B with Axolotl The following example will introduce finetuning [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) with [alpaca_2k_test](https://huggingface.co/datasets/mhenrichsen/alpaca_2k_test) dataset using LoRA and QLoRA. Note that you don't need to write any code in this example. | Model | Dataset | Finetune method | |-------|-------|-------| | Llama-2-7B | alpaca_2k_test | LoRA (Low-Rank Adaptation) | | Llama-2-7B | alpaca_2k_test | QLoRA (Quantized Low-Rank Adaptation) | For more technical details, please refer to [Llama 2](https://arxiv.org/abs/2307.09288), [LoRA](https://arxiv.org/abs/2106.09685) and [QLoRA](https://arxiv.org/abs/2305.14314). #### 2.1 Download Llama-2-7B and alpaca_2k_test By default, Axolotl will automatically download models and datasets from Huggingface. Please ensure you have login to Huggingface. ```bash huggingface-cli login ``` If you prefer offline models and datasets, please download [Llama-2-7B](https://huggingface.co/meta-llama/Llama-2-7b) and [alpaca_2k_test](https://huggingface.co/datasets/mhenrichsen/alpaca_2k_test). Then, set `HF_HUB_OFFLINE=1` to avoid connecting to Huggingface. ```bash export HF_HUB_OFFLINE=1 ``` #### 2.2 Set Environment Variables > [!NOTE] > This is a required step on for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. Configure oneAPI variables by running the following command: ```bash source /opt/intel/oneapi/setvars.sh ``` Configure accelerate to avoid training with CPU. You can download a default `default_config.yaml` with `use_cpu: false`. ```bash mkdir -p ~/.cache/huggingface/accelerate/ wget -O ~/.cache/huggingface/accelerate/default_config.yaml https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/default_config.yaml ``` As an alternative, you can config accelerate based on your requirements. ```bash accelerate config ``` Please answer `NO` in option `Do you want to run your training on CPU only (even if a GPU / Apple Silicon device is available)? [yes/NO]:`. After finishing accelerate config, check if `use_cpu` is disabled (i.e., `use_cpu: false`) in accelerate config file (`~/.cache/huggingface/accelerate/default_config.yaml`). #### 2.3 LoRA finetune Prepare `lora.yml` for Axolotl LoRA finetune. You can download a template from github. ```bash wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/lora.yml ``` **If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `lora.yml`. Otherwise, keep them unchanged. ```yaml # Please change to local path if model is offline, e.g., /path/to/model/Llama-2-7b-hf base_model: NousResearch/Llama-2-7b-hf datasets: # Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test - path: mhenrichsen/alpaca_2k_test type: alpaca ``` Modify LoRA parameters, such as `lora_r` and `lora_alpha`, etc. ```yaml adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: ``` Launch LoRA training with the following command. ```bash accelerate launch finetune.py lora.yml ``` In Axolotl v0.4.0, you can use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`. ```bash accelerate launch train.py lora.yml ``` #### 2.4 QLoRA finetune Prepare `lora.yml` for QLoRA finetune. You can download a template from github. ```bash wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/qlora.yml ``` **If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `qlora.yml`. Otherwise, keep them unchanged. ```yaml # Please change to local path if model is offline, e.g., /path/to/model/Llama-2-7b-hf base_model: NousResearch/Llama-2-7b-hf datasets: # Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test - path: mhenrichsen/alpaca_2k_test type: alpaca ``` Modify QLoRA parameters, such as `lora_r` and `lora_alpha`, etc. ```yaml adapter: qlora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: ``` Launch LoRA training with the following command. ```bash accelerate launch finetune.py qlora.yml ``` In Axolotl v0.4.0, you can use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`. ```bash accelerate launch train.py qlora.yml ``` ### 3. Finetune Llama-3-8B (Experimental) Warning: this section will install axolotl main ([796a085](https://github.com/OpenAccess-AI-Collective/axolotl/tree/796a085b2f688f4a5efe249d95f53ff6833bf009)) for new features, e.g., Llama-3-8B. #### 3.1 Install Axolotl main in conda Axolotl main has lots of new dependencies. Please setup a new conda env for this version. ```bash conda create -n llm python=3.11 conda activate llm # install axolotl main git clone https://github.com/OpenAccess-AI-Collective/axolotl cd axolotl && git checkout 796a085 pip install -e . # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ # install transformers etc # to avoid https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544 pip install datasets==2.15.0 pip install transformers==4.37.0 ``` Config accelerate and oneAPIs, according to [Set Environment Variables](#22-set-environment-variables). #### 3.2 Alpaca QLoRA Based on [axolotl Llama-3 QLoRA example](https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/llama-3/qlora.yml). Prepare `llama3-qlora.yml` for QLoRA finetune. You can download a template from github. ```bash wget https://raw.githubusercontent.com/intel-analytics/ipex-llm/main/python/llm/example/GPU/LLM-Finetuning/axolotl/llama3-qlora.yml ``` **If you are using the offline model and dataset in local env**, please modify the model path and dataset path in `llama3-qlora.yml`. Otherwise, keep them unchanged. ```yaml # Please change to local path if model is offline, e.g., /path/to/model/Meta-Llama-3-8B base_model: meta-llama/Meta-Llama-3-8B datasets: # Please change to local path if dataset is offline, e.g., /path/to/dataset/alpaca_2k_test - path: aaditya/alpaca_subset_1 type: alpaca ``` Modify QLoRA parameters, such as `lora_r` and `lora_alpha`, etc. ```yaml adapter: qlora lora_model_dir: sequence_len: 256 sample_packing: true pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: ``` ```bash accelerate launch finetune.py llama3-qlora.yml ``` You can also use `train.py` instead of `-m axolotl.cli.train` or `finetune.py`. ```bash accelerate launch train.py llama3-qlora.yml ``` Expected output ```bash {'loss': 0.237, 'learning_rate': 1.2254711850265387e-06, 'epoch': 3.77} {'loss': 0.6068, 'learning_rate': 1.1692453482951115e-06, 'epoch': 3.77} {'loss': 0.2926, 'learning_rate': 1.1143322458989303e-06, 'epoch': 3.78} {'loss': 0.2475, 'learning_rate': 1.0607326072295087e-06, 'epoch': 3.78} {'loss': 0.1531, 'learning_rate': 1.008447144232094e-06, 'epoch': 3.79} {'loss': 0.1799, 'learning_rate': 9.57476551396197e-07, 'epoch': 3.79} {'loss': 0.2724, 'learning_rate': 9.078215057463868e-07, 'epoch': 3.79} {'loss': 0.2534, 'learning_rate': 8.594826668332445e-07, 'epoch': 3.8} {'loss': 0.3388, 'learning_rate': 8.124606767246579e-07, 'epoch': 3.8} {'loss': 0.3867, 'learning_rate': 7.667561599972505e-07, 'epoch': 3.81} {'loss': 0.2108, 'learning_rate': 7.223697237281668e-07, 'epoch': 3.81} {'loss': 0.0792, 'learning_rate': 6.793019574868775e-07, 'epoch': 3.82} ``` ## Troubleshooting ### TypeError: PosixPath Error message: `TypeError: argument of type 'PosixPath' is not iterable` This issue is related to [axolotl #1544](https://github.com/OpenAccess-AI-Collective/axolotl/issues/1544). It can be fixed by downgrading datasets to 2.15.0. ```bash pip install datasets==2.15.0 ``` ### RuntimeError: out of device memory Error message: `RuntimeError: Allocation is out of device memory on current platform.` This issue is caused by running out of GPU memory. Please reduce `lora_r` or `micro_batch_size` in `qlora.yml` or `lora.yml`, or reduce data using in training. ### OSError: libmkl_intel_lp64.so.2 Error message: `OSError: libmkl_intel_lp64.so.2: cannot open shared object file: No such file or directory` oneAPI environment is not correctly set. Please refer to [Set Environment Variables](#22-set-environment-variables).