# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, GenerationConfig from bigdl.llm import optimize_model # you could tune the prompt based on your own model, # here the prompt tuning refers to https://huggingface.co/microsoft/phi-2 PHI_2_V1_PROMPT_FORMAT = "Question: {prompt}\n\n Answer:" generation_config = GenerationConfig(use_cache = True) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for phi-2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="microsoft/phi-2", help='The huggingface repo id for the phi-2 model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path # Load model model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) # With only one line to enable BigDL-LLM optimization on model # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the optimize_model function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = optimize_model(model) model = model.to('xpu') # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): prompt = PHI_2_V1_PROMPT_FORMAT.format(prompt=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') model.generation_config.pad_token_id = model.generation_config.eos_token_id # ipex model needs a warmup, then inference time can be accurate output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict, generation_config = generation_config) # start inference st = time.time() # Note that phi-2 uses GenerationConfig to enable 'use_cache' output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict, generation_config = generation_config) torch.xpu.synchronize() end = time.time() output = output.cpu() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)