# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse import numpy as np from ipex_llm.transformers import AutoModel from transformers import AutoTokenizer if __name__ == '__main__': parser = argparse.ArgumentParser(description='Stream Chat for ChatGLM3 model') parser.add_argument('--repo-id-or-model-path', type=str, default="THUDM/chatglm3-6b", help='The huggingface repo id for the ChatGLM3 model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--question', type=str, default="晚上睡不着应该怎么办", help='Qustion you want to ask') parser.add_argument('--disable-stream', action="store_true", help='Disable stream chat') args = parser.parse_args() model_path = args.repo_id_or_model_path disable_stream = args.disable_stream # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, optimize_model=True) model.to('xpu') # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) with torch.inference_mode(): prompt = args.question input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') # ipex model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=32) # start inference if disable_stream: # Chat response, history = model.chat(tokenizer, args.question, history=[]) print('-'*20, 'Chat Output', '-'*20) print(response) else: # Stream chat response_ = "" print('-'*20, 'Stream Chat Output', '-'*20) for response, history in model.stream_chat(tokenizer, args.question, history=[]): print(response.replace(response_, ""), end="") response_ = response