# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # =========================================================================== # # This file is adapted from # https://github.com/li-plus/chatglm.cpp/blob/main/convert.py # # MIT License # # Copyright (c) 2023 Georgi Gerganov # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Convert Hugging Face ChatGLM/ChatGLM2 models to GGML format """ import argparse import platform import struct import sys from enum import Enum from pathlib import Path import torch from tabulate import tabulate from tqdm import tqdm from transformers import AutoModel, AutoTokenizer from ipex_llm.utils.common import invalidInputError GGML_QK8_0 = 64 GGML_QK4_0 = 64 GGML_QK4_1 = 64 GGML_QK5_0 = 32 GGML_QK5_1 = 32 GGML_MEM_ALIGN = 16 if platform.system() == "Darwin": # cpm_kernels doesn't support macOS but transformers will check missing packages, so mock it sys.modules["cpm_kernels"] = object() class GGMLType(Enum): F32 = 0 F16 = 1 Q4_0 = 2 Q4_1 = 3 Q5_0 = 6 Q5_1 = 7 Q8_0 = 8 class ModelType(Enum): CHATGLM = 1 CHATGLM2 = 2 def quantize_q8_0(tensor: torch.Tensor) -> torch.CharTensor: # equivalent to ggml_quantize_q8_0 in ggml.c invalidInputError(tensor.shape[1] % GGML_QK8_0 == 0, "tensor.shape[1] should be divided by GGML_QK8_0(64), " f"but get {tensor.shape[1]}") tensor = tensor.view(-1, GGML_QK8_0) scale = tensor.abs().max(dim=-1, keepdim=True).values / ((1 << 7) - 1) tensor = (tensor / scale).round().clamp(min=-128, max=127).char() # add scale into each block tensor = torch.cat((scale.half().view(torch.int8), tensor), dim=-1) return tensor def quantize_q4_0(tensor: torch.Tensor) -> torch.CharTensor: # equivalent to ggml_quantize_q4_0 in ggml.c invalidInputError(tensor.shape[1] % GGML_QK4_1 == 0, "tensor.shape[1] should be divided by GGML_QK4_1(64), " f"but get {tensor.shape[1]}") tensor = tensor.view(-1, GGML_QK4_0) abs_max_indices = tensor.abs().max(dim=-1, keepdim=True).indices max_values = torch.take_along_dim(tensor, abs_max_indices, dim=-1) scale = max_values / -8 tensor = (tensor / scale + 8).round().clamp(min=0, max=15).char() # compress two int4 weights into an int8 tensor = tensor[:, :GGML_QK4_0//2] | (tensor[:, GGML_QK4_0//2:] << 4) # add scale into each block tensor = torch.cat((scale.half().view(torch.int8), tensor), dim=-1) return tensor def quantize_q4_1(tensor: torch.Tensor) -> torch.CharTensor: # equivalent to ggml_quantize_q4_1 in ggml.c invalidInputError(tensor.shape[1] % GGML_QK4_1 == 0, "tensor.shape[1] should be divided by GGML_QK4_1(64), " f"but get {tensor.shape[1]}") tensor = tensor.view(-1, GGML_QK4_1) min_vals = tensor.min(dim=-1, keepdim=True).values max_vals = tensor.max(dim=-1, keepdim=True).values scale = (max_vals - min_vals) / ((1 << 4) - 1) tensor = ((tensor - min_vals) / scale).round().clamp(min=0, max=15).char() # compress two int4 weights into an int8 tensor = tensor[:, :GGML_QK4_1//2] | (tensor[:, GGML_QK4_1//2:] << 4) # add scale & min into each block tensor = torch.cat((scale.half().view(torch.int8), min_vals.half().view(torch.int8), tensor), dim=-1) return tensor def quantize_q5_0(tensor: torch.Tensor) -> torch.CharTensor: # equivalent to ggml_quantize_q5_0 in ggml.c invalidInputError(tensor.shape[1] % GGML_QK5_0 == 0, "tensor.shape[1] should be divided by GGML_QK5_1(32), " f"but get {tensor.shape[1]}") tensor = tensor.view(-1, GGML_QK5_0) abs_max_indices = tensor.abs().max(dim=-1, keepdim=True).indices max_values = torch.take_along_dim(tensor, abs_max_indices, dim=-1) scale = max_values / -16 tensor = (tensor / scale + 16).round().clamp(min=0, max=31).char() qs = (tensor[:, :16] & 0x0F) | (tensor[:, 16:] << 4) qh = torch.zeros(tensor.shape[:-1], dtype=torch.int32) for i in range(32): qh |= ((tensor[:, i] & 0x10) >> 4).int() << i # add scale into each block tensor = torch.cat((scale.half().view(torch.int8), qh[..., None].view(torch.int8), qs), dim=-1) return tensor def quantize_q5_1(tensor: torch.Tensor) -> torch.CharTensor: # equivalent to ggml_quantize_q5_1 in ggml.c invalidInputError(tensor.shape[1] % GGML_QK5_1 == 0, "tensor.shape[1] should be divided by GGML_QK5_1(32), " f"but get {tensor.shape[1]}") tensor = tensor.view(-1, GGML_QK5_1) min_vals = tensor.min(dim=-1, keepdim=True).values max_vals = tensor.max(dim=-1, keepdim=True).values scale = (max_vals - min_vals) / ((1 << 5) - 1) tensor = ((tensor - min_vals) / scale).round().clamp(min=0, max=31).char() qs = (tensor[:, :16] & 0x0F) | (tensor[:, 16:] << 4) qh = torch.zeros(tensor.shape[:-1], dtype=torch.int32) for i in range(32): qh |= ((tensor[:, i] & 0x10) >> 4).int() << i # add scale & min into each block tensor = torch.cat( (scale.half().view(torch.int8), min_vals.half().view(torch.int8), qh[..., None].view(torch.int8), qs), dim=-1 ) return tensor def dump_tensor(f, name: str, tensor: torch.Tensor, ggml_type: GGMLType): invalidInputError(tensor.dtype == torch.float32, "tensor.dtype should be torch.float32, " f"but get {tensor.dtype}") # tensor name f.write(struct.pack("i", len(name.encode()))) f.write(name.encode()) # tensor shape & dtype f.write(struct.pack("i" * (2 + tensor.ndim), tensor.ndim, *tensor.shape, ggml_type.value)) # tensor data if ggml_type == GGMLType.F32: tensor = tensor.float() elif ggml_type == GGMLType.F16: tensor = tensor.half() elif ggml_type == GGMLType.Q8_0: tensor = quantize_q8_0(tensor) elif ggml_type == GGMLType.Q4_0: tensor = quantize_q4_0(tensor) elif ggml_type == GGMLType.Q4_1: tensor = quantize_q4_1(tensor) elif ggml_type == GGMLType.Q5_0: tensor = quantize_q5_0(tensor) elif ggml_type == GGMLType.Q5_1: tensor = quantize_q5_1(tensor) else: invalidInputError(False, f"Cannot dump tensor of dtype {tensor.dtype}") # align address aligned_pos = (f.tell() + (GGML_MEM_ALIGN - 1)) // GGML_MEM_ALIGN * GGML_MEM_ALIGN f.seek(aligned_pos) tensor.numpy().tofile(f) def dump_state_dict(f, weight_names, state_dict, quantization_bit, ggml_type): tensor_info = [] for name in tqdm(weight_names, desc="Dumping model state"): tensor = state_dict[name] if tensor.ndim == 2: # 2d weight: should quantize it if needed # step 1: de-quantize it back to float32 if tensor.dtype == torch.int8: invalidInputError(quantization_bit in [4, 8], "quantization_bit should be 4 or 8.") scale = state_dict[f"{name}_scale"].float() # channel-wise scale if quantization_bit == 4: # convert int4 weight to int8 low_bits = ((tensor << 4) & 0xF0) >> 4 high_bits = (tensor & 0xF0) >> 4 tensor = torch.stack((high_bits, low_bits), dim=-1).view(tensor.shape[0], -1) tensor = tensor * scale[:, None] else: tensor = tensor.float() # step 2: quantize it into ggml format tensor_ggml_type = ggml_type else: # 1d weight: convert it to float32 invalidInputError(tensor.ndim == 1, "tensor.ndim should be 1") tensor = tensor.float() tensor_ggml_type = GGMLType.F32 dump_tensor(f, name, tensor, tensor_ggml_type) tensor_info.append((name, tensor.shape, tensor_ggml_type.name)) print(tabulate(tensor_info, headers=["name", "shape", "dtype"], tablefmt="psql")) class BaseConverter: @classmethod def convert(cls, model, tokenizer, ggml_type, save_path): # convert all weights to fp16 with open(save_path, "wb") as f: f.write(b"ggml") # magic f.write(struct.pack("ii", cls.MODEL_TYPE.value, 1)) # model type & version cls.dump_config(f, model.config, ggml_type) cls.dump_tokenizer(f, tokenizer) cls.dump_model(f, model, ggml_type) print(f"{cls.MODEL_TYPE.name} GGML model saved to {save_path}") return save_path class ChatGLMConverter(BaseConverter): MODEL_TYPE = ModelType.CHATGLM @staticmethod def dump_config(f, config, ggml_type): invalidInputError(config.position_encoding_2d, "unimplemented: position_encoding_2d should be True") invalidInputError(( config.inner_hidden_size == 4 * config.hidden_size ), "unimplemented: inner_hidden_size should be 4 times hidden_size") config_values = [ ggml_type.value, config.vocab_size, config.hidden_size, config.num_attention_heads, config.num_layers, config.inner_hidden_size, config.max_sequence_length, config.bos_token_id if config.bos_token_id is not None else -1, config.eos_token_id if config.eos_token_id is not None else -1, config.pad_token_id if config.pad_token_id is not None else -1, config.sep_token_id if config.sep_token_id is not None else -1, ] f.write(struct.pack("i" * len(config_values), *config_values)) @staticmethod def dump_tokenizer(f, tokenizer): serialized_model_proto = tokenizer.sp_tokenizer.text_tokenizer.sp.serialized_model_proto() f.write(struct.pack("i", len(serialized_model_proto))) f.write(serialized_model_proto) @staticmethod def dump_model(f, model, ggml_type): invalidInputError(torch.allclose( model.state_dict()["transformer.word_embeddings.weight"], model.state_dict()["lm_head.weight"] ), "unimplemented: lm_head weight must be tied to input embedding") weight_names = ["transformer.word_embeddings.weight"] for i in range(model.config.num_layers): weight_names += [ f"transformer.layers.{i}.input_layernorm.weight", f"transformer.layers.{i}.input_layernorm.bias", f"transformer.layers.{i}.attention.query_key_value.weight", f"transformer.layers.{i}.attention.query_key_value.bias", f"transformer.layers.{i}.attention.dense.weight", f"transformer.layers.{i}.attention.dense.bias", f"transformer.layers.{i}.post_attention_layernorm.weight", f"transformer.layers.{i}.post_attention_layernorm.bias", f"transformer.layers.{i}.mlp.dense_h_to_4h.weight", f"transformer.layers.{i}.mlp.dense_h_to_4h.bias", f"transformer.layers.{i}.mlp.dense_4h_to_h.weight", f"transformer.layers.{i}.mlp.dense_4h_to_h.bias", ] weight_names += [ "transformer.final_layernorm.weight", "transformer.final_layernorm.bias", ] dump_state_dict(f, weight_names, model.state_dict(), model.config.quantization_bit, ggml_type) class ChatGLM2Converter(BaseConverter): MODEL_TYPE = ModelType.CHATGLM2 @staticmethod def dump_config(f, config, ggml_type): invalidInputError(config.add_bias_linear is False, "unimplemented: add_bias_linear must be false") invalidInputError(config.add_qkv_bias is True, "unimplemented: add_qkv_bias must be true") invalidInputError(( config.apply_residual_connection_post_layernorm is False ), "unimplemented: apply_residual_connection_post_layernorm must be false") invalidInputError(( config.kv_channels * config.num_attention_heads == config.hidden_size ), "unimplemented: invalid kv_channels") invalidInputError(config.multi_query_attention is True, "unimplemented: multi_query_attention must be true") invalidInputError(config.original_rope is True, "unimplemented: original_rope must be true") invalidInputError(config.post_layer_norm is True, "unimplemented: post_layer_norm must be true") invalidInputError(config.rmsnorm is True, "unimplemented: rmsnorm must be true") config_values = [ ggml_type.value, config.padded_vocab_size, config.hidden_size, config.num_attention_heads, config.num_layers, config.ffn_hidden_size, config.seq_length, config.bos_token_id if config.bos_token_id is not None else -1, config.eos_token_id if config.eos_token_id is not None else -1, config.pad_token_id if config.pad_token_id is not None else -1, config.sep_token_id if config.sep_token_id is not None else -1, config.multi_query_group_num, ] f.write(struct.pack("i" * len(config_values), *config_values)) @staticmethod def dump_tokenizer(f, tokenizer): serialized_model_proto = tokenizer.tokenizer.sp_model.serialized_model_proto() f.write(struct.pack("i", len(serialized_model_proto))) f.write(serialized_model_proto) @staticmethod def dump_model(f, model, ggml_type): weight_names = ["transformer.embedding.word_embeddings.weight"] for i in range(model.config.num_layers): weight_names += [ f"transformer.encoder.layers.{i}.input_layernorm.weight", f"transformer.encoder.layers.{i}.self_attention.query_key_value.weight", f"transformer.encoder.layers.{i}.self_attention.query_key_value.bias", f"transformer.encoder.layers.{i}.self_attention.dense.weight", f"transformer.encoder.layers.{i}.post_attention_layernorm.weight", f"transformer.encoder.layers.{i}.mlp.dense_h_to_4h.weight", f"transformer.encoder.layers.{i}.mlp.dense_4h_to_h.weight", ] weight_names += [ "transformer.encoder.final_layernorm.weight", "transformer.output_layer.weight", ] dump_state_dict(f, weight_names, model.state_dict(), model.config.quantization_bit, ggml_type) def _convert_chatglm_hf_to_ggml_(model_path, outfile_dir, outtype): ggml_type = GGMLType[outtype.upper()] tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModel.from_pretrained(model_path, trust_remote_code=True) if hasattr(model.config, "multi_query_attention"): return ChatGLM2Converter.convert(model, tokenizer, ggml_type, outfile_dir) else: return ChatGLMConverter.convert(model, tokenizer, ggml_type, outfile_dir) def main(): parser = argparse.ArgumentParser("chatglm-convert") parser.add_argument( "-i", "--model_name_or_path", default="THUDM/chatglm-6b", type=str, help="Model name or path used in AutoModel.from_pretrained", ) parser.add_argument( "-o", "--save_path", default="", type=str, help="Path to save the generated GGML model" ) parser.add_argument( "-t", "--type", default="q4_0", type=str, choices=["f32", "f16", "q8_0", "q4_0", "q4_1", "q5_0", "q5_1"], help="GGML model quantization type", ) args = parser.parse_args() if args.save_path == "": args.save_path = f"bigdl_llm_chatglm_{args.type.lower()}.bin" ggml_type = GGMLType[args.type.upper()] tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True) model = AutoModel.from_pretrained(args.model_name_or_path, trust_remote_code=True) if hasattr(model.config, "multi_query_attention"): ChatGLM2Converter.convert(model, tokenizer, ggml_type, args.save_path) else: ChatGLMConverter.convert(model, tokenizer, ggml_type, args.save_path) if __name__ == "__main__": main()