# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from transformers import AutoModelForCausalLM, LlamaTokenizer from ipex_llm import optimize_model WIZARDCODERPYTHON_PROMPT_FORMAT = """Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response:""" if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for WizardCoder-Python model') parser.add_argument('--repo-id-or-model-path', type=str, default="WizardLM/WizardCoder-Python-7B-V1.0", help='The huggingface repo id for the WizardCoder-Python (e.g. `WizardLM/WizardCoder-Python-7B-V1.0`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="def print_hello_world():", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=64, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path # Load model model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True) # With only one line to enable IPEX-LLM optimization on model model = optimize_model(model) # Load tokenizer tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): prompt = WIZARDCODERPYTHON_PROMPT_FORMAT.format(prompt=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt") st = time.time() output = model.generate(input_ids, max_new_tokens=args.n_predict) end = time.time() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Output', '-'*20) print(output_str)