# InternLM2 In this directory, you will find examples on how you could use IPEX-LLM `optimize_model` API to accelerate InternLM2 models. For illustration purposes, we utilize the [internlm/internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) as reference InternLM2 model. ## Requirements To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a InternLM2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage the Python environment. For more information about conda installation, please refer to [here](https://conda-forge.org/download/). After installing conda, create a Python environment for IPEX-LLM: On Linux: ```bash conda create -n llm python=3.11 # recommend to use Python 3.11 conda activate llm # install the latest ipex-llm nightly build with 'all' option pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu pip install transformers==3.36.2 pip install huggingface_hub ``` On Windows: ```cmd conda create -n llm python=3.11 conda activate llm pip install --pre --upgrade ipex-llm[all] pip install transformers==3.36.2 pip install huggingface_hub ``` ### 2. Run After setting up the Python environment, you could run the example by following steps. Setup local MODEL_PATH and run python code to download the right version of model from hugginface. ```python from huggingface_hub import snapshot_download snapshot_download(repo_id=repo_id, local_dir=MODEL_PATH, local_dir_use_symlinks=False, revision="v1.1.0") ``` Then run the example with the downloaded model ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternLM2 model (e.g. `internlm/internlm2-chat-7b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'internlm/internlm2-chat-7b'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. #### 2.1 Client On client Windows machines, it is recommended to run directly with full utilization of all cores: ```cmd python ./generate.py --prompt 'What is AI?' --repo-id-or-model-path REPO_ID_OR_MODEL_PATH ``` More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. E.g. on Linux, ```bash # set IPEX-LLM env variables source ipex-llm-init # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 numactl -C 0-47 -m 0 python ./generate.py --prompt 'What is AI?' --repo-id-or-model-path REPO_ID_OR_MODEL_PATH ``` More information about arguments can be found in [Arguments Info](#23-arguments-info) section. The expected output can be found in [Sample Output](#24-sample-output) section. #### 2.3 Arguments Info In the example, several arguments can be passed to satisfy your requirements: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternLM2 to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'internlm/internlm2-chat-7b'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. #### 2.3 Sample Output #### [internlm/internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) ```log Inference time: xxxx s -------------------- Prompt -------------------- <|User|>:AI是什么? <|Bot|>: -------------------- Output -------------------- <|User|>:AI是什么? <|Bot|>:AI是人工智能的缩写,是计算机科学的一个分支,旨在使计算机能够像人类一样思考、学习和执行任务。AI技术包括机器学习、自然 ``` ```log Inference time: xxxx s -------------------- Prompt -------------------- <|User|>:What is AI? <|Bot|>: -------------------- Output -------------------- <|User|>:What is AI? <|Bot|>:AI is the ability of machines to perform tasks that would normally require human intelligence, such as perception, reasoning, learning, and decision-making. AI is made possible ```