# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import os import torch import time from transformers import AutoTokenizer from ipex_llm.transformers import AutoModelForCausalLM, init_pipeline_parallel init_pipeline_parallel() torch.manual_seed(1234) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for large vision language model') parser.add_argument('--repo-id-or-model-path', type=str, default="Qwen/Qwen-VL-Chat", help='The huggingface repo id for the Qwen-VL-Chat model to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--image-url-or-path', type=str, default="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg", help='The URL or path to the image to infer') parser.add_argument('--prompt', type=str, default="这是什么?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument('--low-bit', type=str, default='sym_int4', help='The quantization type the model will convert to.') parser.add_argument('--gpu-num', type=int, default=2, help='GPU number to use') args = parser.parse_args() model_path = args.repo_id_or_model_path image_path = args.image_url_or_path # Load model # For successful IPEX-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=args.low_bit, optimize_model=True, trust_remote_code=True, use_cache=True, torch_dtype=torch.float32, modules_to_not_convert=['c_fc', 'out_proj'], pipeline_parallel_stages=args.gpu_num) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) local_rank = torch.distributed.get_rank() all_input = [{'image': args.image_url_or_path}, {'text': args.prompt}] input_list = [_input for _input in all_input if list(_input.values())[0] != ''] query = tokenizer.from_list_format(input_list) with torch.inference_mode(): response, _ = model.chat(tokenizer, query=query, history=[]) torch.xpu.synchronize() if local_rank == args.gpu_num - 1: print('-'*20, 'Input', '-'*20) print(f'Message: {all_input}') print('-'*20, 'Output', '-'*20) print(response)