# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch, transformers import sys, os, time import argparse from transformers import LlamaTokenizer from ipex_llm.transformers import AutoModelForCausalLM # Refer to https://huggingface.co/IEITYuan/Yuan2-2B-hf#Usage YUAN2_PROMPT_FORMAT = """ {prompt} """ if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generate text using Yuan2-2B model') parser.add_argument('--repo-id-or-model-path', type=str, default="IEITYuan/Yuan2-2B-hf", help='The huggingface repo id for the Yuan2 to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt for the model') parser.add_argument('--n-predict', type=int, default=100, help='Number of tokens to generate') args = parser.parse_args() model_path = args.repo_id_or_model_path # Load tokenizer print("Creating tokenizer...") tokenizer = LlamaTokenizer.from_pretrained(model_path, add_eos_token=False, add_bos_token=False, eos_token='') tokenizer.add_tokens(['', '', '', '', '', '', '','', '','','','','','',''], special_tokens=True) # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. print("Creating model...") model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, load_in_4bit=True).eval() # Convert the model to xpu model = model.to('xpu') prompt = YUAN2_PROMPT_FORMAT.format(prompt=args.prompt) inputs = tokenizer(prompt, return_tensors="pt")["input_ids"] # Convert the inputs to xpu inputs = inputs.to('xpu') # Default warmup since the first generate() is slow outputs = model.generate(inputs, do_sample=True, top_k=5, max_length=args.n_predict) print('Finish warmup') # Measure the inference time start_time = time.time() # if your selected model is capable of utilizing previous key/value attentions # to enhance decoding speed, but has `"use_cache": false` in its model config, # it is important to set `use_cache=True` explicitly in the `generate` function # to obtain optimal performance with IPEX-LLM INT4 optimizations outputs = model.generate(inputs, do_sample=True, top_k=5, max_length=args.n_predict) end_time = time.time() output_str = tokenizer.decode(outputs[0]) print(f'Inference time: {end_time - start_time} seconds') print('-'*20, 'Output', '-'*20) print(output_str)