# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import os import transformers from transformers import LlamaTokenizer import intel_extension_for_pytorch as ipex from peft import LoraConfig from transformers import BitsAndBytesConfig from bigdl.llm.transformers.qlora import get_peft_model, prepare_model_for_kbit_training from bigdl.llm.transformers import AutoModelForCausalLM from datasets import load_dataset import argparse if __name__ == "__main__": parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--dataset', type=str, default="Abirate/english_quotes") args = parser.parse_args() model_path = args.repo_id_or_model_path dataset_path = args.dataset tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) data = load_dataset(dataset_path) data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=False, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model = AutoModelForCausalLM.from_pretrained(model_path, quantization_config=bnb_config, ) # below is also supported # model = AutoModelForCausalLM.from_pretrained(model_path, # load_in_low_bit="nf4", # optimize_model=False, # torch_dtype=torch.bfloat16, # modules_to_not_convert=["lm_head"],) model = model.to('xpu') # Enable gradient_checkpointing if your memory is not enough, # it will slowdown the training speed # model.gradient_checkpointing_enable() model = prepare_model_for_kbit_training(model) config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "k_proj", "v_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) tokenizer.pad_token_id = 0 tokenizer.padding_side = "left" trainer = transformers.Trainer( model=model, train_dataset=data["train"], args=transformers.TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps= 1, warmup_steps=20, max_steps=200, learning_rate=2e-5, save_steps=100, bf16=True, # bf16 is more stable in training logging_steps=20, output_dir="outputs", optim="adamw_hf", # paged_adamw_8bit is not supported yet # gradient_checkpointing=True, # can further reduce memory but slower ), data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False), ) model.config.use_cache = False # silence the warnings. Please re-enable for inference! result = trainer.train() print(result)