# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os import torch import time import argparse import requests from ipex_llm.transformers import AutoModelForCausalLM from PIL import Image if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for glm-edge-v model') parser.add_argument('--repo-id-or-model-path', type=str, help='The Hugging Face or ModelScope repo id for the glm-edge-v model to be downloaded' ', or the path to the checkpoint folder') parser.add_argument('--image-url-or-path', type=str, default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg', help='The URL or path to the image to infer') parser.add_argument('--prompt', type=str, default="What is in the image?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument('--modelscope', action="store_true", default=False, help="Use models from modelscope") args = parser.parse_args() if args.modelscope: from modelscope import AutoTokenizer, AutoImageProcessor model_hub = 'modelscope' else: from transformers import AutoTokenizer, AutoImageProcessor model_hub = 'huggingface' model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \ ("ZhipuAI/glm-edge-v-5b" if args.modelscope else "THUDM/glm-edge-v-5b") image_path = args.image_url_or_path # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True, modules_to_not_convert=["vision"], use_cache=True, model_hub=model_hub) model = model.half().to('xpu') tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) query = args.prompt if os.path.exists(image_path): image = Image.open(image_path) else: image = Image.open(requests.get(image_path, stream=True).raw) image_processor = AutoImageProcessor.from_pretrained(model_path, trust_remote_code=True) with torch.inference_mode(): pixel_values = image_processor(images=[image], return_tensors='pt').pixel_values pixel_values = pixel_values.to('xpu') # The following code for generation is adapted from https://huggingface.co/THUDM/glm-edge-v-5b#inference messages = [{ "role": "user", "content": [{"type": "image"}, {"type": "text", "text": args.prompt}] }] inputs = tokenizer.apply_chat_template( messages, add_generation_prompt=True, return_dict=True, tokenize=True, return_tensors="pt" ) inputs = inputs.to('xpu') generate_kwargs = { **inputs, "pixel_values": pixel_values, "max_new_tokens": args.n_predict, } # ipex_llm model needs a warmup, then inference time can be accurate output = model.generate(**generate_kwargs) st = time.time() output = model.generate(**generate_kwargs) torch.xpu.synchronize() end = time.time() output_str = tokenizer.decode( output[0][len(inputs["input_ids"][0]):], skip_special_tokens=True ) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(args.prompt) print('-'*20, 'Output', '-'*20) print(output_str)