# DLlib User Guide ## 1. Overview DLlib is a distributed deep learning library for Apache Spark; with DLlib, users can write their deep learning applications as standard Spark programs (using either Scala or Python APIs). It includes the functionalities of the [original BigDL](https://github.com/intel-analytics/BigDL/tree/branch-0.14) project, and provides following high-level APIs for distributed deep learning on Spark: * [Keras-like API](keras-api.md) * [Spark ML pipeline support](nnframes.md) ## 2. Scala user guide ### 2.1 Install #### 2.1.1 **Download a pre-built library** You can download the bigdl-dllib build from the [Release Page](../release.md). #### 2.1.2 **Link with a release version** Currently, dllib releases are hosted on maven central; here's an example to add the dllib dependency to your own project: ```xml com.intel.analytics.bigdl bigdl-dllib-[spark_2.4.6|spark_3.1.2] ${BIGD_DLLIB_VERSION} ``` Please choose the suffix according to your Spark platform. SBT developers can use ```sbt libraryDependencies += "com.intel.analytics.bigdl" % "dllib-[spark_2.4.6|spark_3.1.2]" % "${BIGDL_DLLIB_VERSION}" ``` ### 2.2 Run #### 2.2.1 **Set Environment Variables** Set **BIGDL_HOME** and **SPARK_HOME**: * If you download bigdl-dllib from the [Release Page](../release-download.md) ```bash export SPARK_HOME=folder path where you extract the spark package export BIGDL_HOME=folder path where you extract the bigdl package ``` --- #### 2.2.2 **Use Interactive Spark Shell** You can try bigdl-dllib easily using the Spark interactive shell. Run below command to start spark shell with bigdl-dllib support: ```bash ${BIGDL_HOME}/bin/spark-shell-with-dllib.sh ``` You will see a welcome message looking like below: ``` Welcome to ____ __ / __/__ ___ _____/ /__ _\ \/ _ \/ _ `/ __/ '_/ /___/ .__/\_,_/_/ /_/\_\ version 2.4.3 /_/ Using Scala version 2.11.12 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_181) Spark context available as sc. scala> ``` To use BigDL, you should first initialize the environment as below. ```scala scala> import com.intel.analytics.bigdl.dllib.NNContext import com.intel.analytics.bigdl.dllib.NNContext scala> NNContext.initNNContext() 2021-10-25 10:12:36 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect. 2021-10-25 10:12:36 WARN SparkContext:66 - Using an existing SparkContext; some configuration may not take effect. res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@525c0f74 ``` Once the environment is successfully initiated, you'll be able to play with dllib API's. For instance, to experiment with the ````dllib.keras```` APIs in dllib, you may try below code: ```scala scala> import com.intel.analytics.bigdl.dllib.keras.layers._ scala> import com.intel.analytics.bigdl.numeric.NumericFloat scala> import com.intel.analytics.bigdl.dllib.utils.Shape scala> val seq = Sequential() val layer = ConvLSTM2D(32, 4, returnSequences = true, borderMode = "same", inputShape = Shape(8, 40, 40, 32)) seq.add(layer) ``` --- #### 2.2.3 **Run as a Spark Program** You can run a bigdl-dllib program, e.g., the [Image Inference](https://github.com/intel-analytics/BigDL/blob/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/nnframes/imageInference), as a standard Spark program (running on either a local machine or a distributed cluster) as follows: 1. Download the pretrained caffe model and prepare the images 2. Run the following command: ```bash # Spark local mode ${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \ --master local[2] \ --class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \ ${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0 -f DATA_PATH \ -b 4 \ --numLayers 2 --vocab 100 --hidden 6 \ --numSteps 3 --learningRate 0.005 -e 1 \ --learningRateDecay 0.001 --keepProb 0.5 # Spark standalone mode ## ${SPARK_HOME}/sbin/start-master.sh ## check master URL from http://localhost:8080 ${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \ --master spark://... \ --executor-cores cores_per_executor \ --total-executor-cores total_cores_for_the_job \ --class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \ ${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0 -f DATA_PATH \ -b 4 \ --numLayers 2 --vocab 100 --hidden 6 \ --numSteps 3 --learningRate 0.005 -e 1 \ --learningRateDecay 0.001 --keepProb 0.5 # Spark yarn client mode ${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \ --master yarn \ --deploy-mode client \ --executor-cores cores_per_executor \ --num-executors executors_number \ --class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \ ${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0 -f DATA_PATH \ -b 4 \ --numLayers 2 --vocab 100 --hidden 6 \ --numSteps 3 --learningRate 0.005 -e 1 \ --learningRateDecay 0.001 --keepProb 0.5 # Spark yarn cluster mode ${BIGDL_HOME}/bin/spark-submit-with-dllib.sh \ --master yarn \ --deploy-mode cluster \ --executor-cores cores_per_executor \ --num-executors executors_number \ --class com.intel.analytics.bigdl.dllib.example.languagemodel.PTBWordLM \ ${BIGDL_HOME}/jars/bigdl-dllib-0.14.0-SNAPSHOT-jar-with-dependencies.jar \ #change to your jar file if your download is not spark_2.4.3-0.14.0 -f DATA_PATH \ -b 4 \ --numLayers 2 --vocab 100 --hidden 6 \ --numSteps 3 --learningRate 0.005 -e 1 \ --learningRateDecay 0.001 --keepProb 0.5 ``` The parameters used in the above command are: * -f: The path where you put your PTB data. * -b: The mini-batch size. The mini-batch size is expected to be a multiple of *total cores* used in the job. In this example, the mini-batch size is suggested to be set to *total cores * 4* * --learningRate: learning rate for adagrad * --learningRateDecay: learning rate decay for adagrad * --hidden: hiddensize for lstm * --vocabSize: vocabulary size, default 10000 * --numLayers: numbers of lstm cell, default 2 lstm cells * --numSteps: number of words per record in LM * --keepProb: the probability to do dropout If you are to run your own program, do remember to do the initialize before call other bigdl-dllib API's, as shown below. ```scala // Scala code example import com.intel.analytics.bigdl.dllib.NNContext NNContext.initNNContext() ``` --- ### 2.3 Get started --- This section show a single example of how to use dllib to build a deep learning application on Spark, using Keras APIs --- #### **LeNet Model on MNIST using Keras-Style API** This tutorial is an explanation of what is happening in the [lenet](https://github.com/intel-analytics/BigDL/tree/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/example/keras) example A bigdl-dllib program starts with initialize as follows. ````scala val conf = Engine.createSparkConf() .setAppName("Train Lenet on MNIST") .set("spark.task.maxFailures", "1") val sc = new SparkContext(conf) Engine.init ```` After the initialization, we need to: 1. Load train and validation data by _**creating the [```DataSet```](https://github.com/intel-analytics/BigDL/blob/branch-2.0/scala/dllib/src/main/scala/com/intel/analytics/bigdl/dllib/feature/dataset/DataSet.scala)**_ (e.g., ````SampleToGreyImg````, ````GreyImgNormalizer```` and ````GreyImgToBatch````): ````scala val trainSet = (if (sc.isDefined) { DataSet.array(load(trainData, trainLabel), sc.get, param.nodeNumber) } else { DataSet.array(load(trainData, trainLabel)) }) -> SampleToGreyImg(28, 28) -> GreyImgNormalizer(trainMean, trainStd) -> GreyImgToBatch( param.batchSize) val validationSet = DataSet.array(load(validationData, validationLabel), sc) -> BytesToGreyImg(28, 28) -> GreyImgNormalizer(testMean, testStd) -> GreyImgToBatch( param.batchSize) ```` 2. We then define Lenet model using Keras-style api ````scala val input = Input(inputShape = Shape(28, 28, 1)) val reshape = Reshape(Array(1, 28, 28)).inputs(input) val conv1 = Convolution2D(6, 5, 5, activation = "tanh").setName("conv1_5x5").inputs(reshape) val pool1 = MaxPooling2D().inputs(conv1) val conv2 = Convolution2D(12, 5, 5, activation = "tanh").setName("conv2_5x5").inputs(pool1) val pool2 = MaxPooling2D().inputs(conv2) val flatten = Flatten().inputs(pool2) val fc1 = Dense(100, activation = "tanh").setName("fc1").inputs(flatten) val fc2 = Dense(classNum, activation = "softmax").setName("fc2").inputs(fc1) Model(input, fc2) ```` 3. After that, we configure the learning process. Set the ````optimization method```` and the ````Criterion```` (which, given input and target, computes gradient per given loss function): ````scala model.compile(optimizer = optimMethod, loss = ClassNLLCriterion[Float](logProbAsInput = false), metrics = Array(new Top1Accuracy[Float](), new Top5Accuracy[Float](), new Loss[Float])) ```` Finally we _**train the model**_ by calling ````model.fit````: ````scala model.fit(trainSet, nbEpoch = param.maxEpoch, validationData = validationSet) ```` --- ## 3. Python user guide ### 3.1 Install #### 3.1.1 Official Release Run below command to install _bigdl-dllib_. ```bash conda create -n my_env python=3.7 conda activate my_env pip install bigdl-dllib ``` #### 3.1.2 Nightly build You can install the latest nightly build of bigdl-dllib as follows: ```bash pip install --pre --upgrade bigdl-dllib ``` ### 3.2 Run #### **3.2.1 Interactive Shell** You may test if the installation is successful using the interactive Python shell as follows: * Type `python` in the command line to start a REPL. * Try to run the example code below to verify the installation: ```python from bigdl.dllib.utils.nncontext import * sc = init_nncontext() # Initiation of bigdl-dllib on the underlying cluster. ``` #### **3.2.2 Jupyter Notebook** You can start the Jupyter notebook as you normally do using the following command and run bigdl-dllib programs directly in a Jupyter notebook: ```bash jupyter notebook --notebook-dir=./ --ip=* --no-browser ``` #### **3.2.3 Python Script** You can directly write bigdl-dlllib programs in a Python file (e.g. script.py) and run in the command line as a normal Python program: ```bash python script.py ``` --- ### 3.3 Get started --- #### **Autograd Examples using bigdl-dllb keras Python API** This tutorial describes the [Autograd](https://github.com/intel-analytics/BigDL/tree/branch-2.0/python/dllib/examples/autograd). The example first do the initializton using `init_nncontext()`: ```python sc = init_nncontext() ``` It then generate the input data X_, Y_ ```python data_len = 1000 X_ = np.random.uniform(0, 1, (1000, 2)) Y_ = ((2 * X_).sum(1) + 0.4).reshape([data_len, 1]) ``` It then define the custom loss ```python def mean_absolute_error(y_true, y_pred): result = mean(abs(y_true - y_pred), axis=1) return result ``` After that, the example creates the model as follows and set the criterion as the custom loss: ```python a = Input(shape=(2,)) b = Dense(1)(a) c = Lambda(function=add_one_func)(b) model = Model(input=a, output=c) model.compile(optimizer=SGD(learningrate=1e-2), loss=mean_absolute_error) ``` Finally the example trains the model by calling `model.fit`: ```python model.fit(x=X_, y=Y_, batch_size=32, nb_epoch=int(options.nb_epoch), distributed=False) ```