# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import intel_extension_for_pytorch as ipex import time import argparse from bigdl.llm.transformers import AutoModelForCausalLM from transformers import LlamaTokenizer # you could tune the prompt based on your own model, # here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style DEFAULT_SYSTEM_PROMPT = """\ """ def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str: texts = [f'[INST] <>\n{system_prompt}\n<>\n\n'] # The first user input is _not_ stripped do_strip = False for user_input, response in chat_history: user_input = user_input.strip() if do_strip else user_input do_strip = True texts.append(f'{user_input} [/INST] {response.strip()} [INST] ') message = message.strip() if do_strip else message texts.append(f'{message} [/INST]') return ''.join(texts) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="LinkSoul/Chinese-Llama-2-7b", help='The huggingface repo id for the Chinese Llama2 (e.g. `LinkSoul/Chinese-Llama-2-7b`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="AI是什么?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # if your selected model is capable of utilizing previous key/value attentions # to enhance decoding speed, but has `"use_cache": false` in its model config, # it is important to set `use_cache=True` explicitly to obtain optimal # performance with BigDL-LLM INT4 optimizations model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True, use_cache=True) model = model.to('xpu') # Load tokenizer tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT) input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') # ipex model needs a warmup, then inference time can be accurate output = model.generate(input_ids, max_new_tokens=args.n_predict) # start inference st = time.time() output = model.generate(input_ids, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() output = output.cpu() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)