# GLM-4 In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on GLM-4 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) (or [ZhipuAI/glm4-9b-chat](https://www.modelscope.cn/models/ZhipuAI/glm4-9b-chat) for ModelScope) as a reference InternLM model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. ## 1. Install ### 1.1 Installation on Linux We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ # install packages required for GLM-4, it is recommended to use transformers>=4.44 for THUDM/glm-4-9b-chat updated after August 12, 2024 pip install "tiktoken>=0.7.0" transformers==4.44 "trl<0.12.0" # [optional] only needed if you would like to use ModelScope as model hub pip install modelscope==1.11.0 ``` ### 1.2 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 libuv conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ # install packages required for GLM-4, it is recommended to use transformers>=4.44 for THUDM/glm-4-9b-chat updated after August 12, 2024 pip install "tiktoken>=0.7.0" transformers==4.44 "trl<0.12.0" # [optional] only needed if you would like to use ModelScope as model hub pip install modelscope==1.11.0 ``` ## 2. Configures OneAPI environment variables for Linux > [!NOTE] > Skip this step if you are running on Windows. This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. ```bash source /opt/intel/oneapi/setvars.sh ``` ## 3. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. ### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 ```
For Intel Data Center GPU Max Series ```bash export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 export ENABLE_SDP_FUSION=1 ``` > Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
For Intel iGPU ```bash export SYCL_CACHE_PERSISTENT=1 ```
### 3.2 Configurations for Windows
For Intel iGPU and Intel Arc™ A-Series Graphics ```cmd set SYCL_CACHE_PERSISTENT=1 ```
> [!NOTE] > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ## 4. Running examples ### Example 1: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a GLM-4 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. ```bash # for Hugging Face model hub python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT # for ModelScope model hub python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT --modelscope ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the **Hugging Face** or **ModelScope** repo id for the GLM-4 model (e.g. `THUDM/glm-4-9b-chat`) to be downloaded, or the path to the checkpoint folder. It is default to be `'THUDM/glm-4-9b-chat'` for **Hugging Face** or `'ZhipuAI/glm-4-9b-chat'` for **ModelScope**. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. - `--modelscope`: using **ModelScope** as model hub instead of **Hugging Face**. #### Sample Output #### [THUDM/glm-4-9b-chat](https://huggingface.co/THUDM/glm-4-9b-chat) ```log Inference time: xxxx s -------------------- Prompt -------------------- <|user|> AI是什么? <|assistant|> -------------------- Output -------------------- AI是什么? AI,即人工智能(Artificial Intelligence),是指由人创造出来的,能够模拟、延伸和扩展人的智能的计算机系统或机器。人工智能的目标 ``` ```log Inference time: xxxx s -------------------- Prompt -------------------- <|user|> What is AI? <|assistant|> -------------------- Output -------------------- What is AI? Artificial Intelligence (AI) refers to the simulation of human intelligence in machines that are programmed to think like humans and mimic their actions. The term "art ```