# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/huggingface/transformers/blob/v4.37.0/src/transformers/models/phi/modeling_phi.py # which is licensed under Apache License 2.0: # # Copyright 2023 Microsoft and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import torch from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_cache_freq_xpu from ipex_llm.transformers.kv import DynamicNormalCache from ipex_llm.utils.common.log4Error import invalidInputError from typing import Optional, Tuple, List from transformers.cache_utils import Cache from transformers.models.phi.modeling_phi import repeat_kv, apply_rotary_pos_emb from transformers.models.phi.modeling_phi import PhiModel def should_use_fuse_rope(self, hidden_states, position_ids): use_fuse_rope = ( hidden_states.device.type == "xpu" and hidden_states.numel() == hidden_states.size(-1) and not (self.training and hidden_states.requires_grad) and position_ids is not None ) return use_fuse_rope def merge_qkv(module: torch.nn.Module): if module.__class__.__name__ == "PhiAttention": new_weight = torch.cat([ module.q_proj.weight.data, module.k_proj.weight.data, module.v_proj.weight.data, ], dim=0) new_bias = torch.cat([ module.q_proj.bias.data, module.k_proj.bias.data, module.v_proj.bias.data, ], dim=-1) qkv_proj = torch.nn.Linear(0, 0, bias=True) qkv_proj.weight = torch.nn.Parameter(new_weight, requires_grad=False) qkv_proj.bias = torch.nn.Parameter(new_bias, requires_grad=False) qkv_proj.in_features = new_weight.size(1) qkv_proj.out_features = new_weight.size(0) module.qkv_proj = qkv_proj del module.q_proj, module.k_proj, module.v_proj def attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() invalidInputError(not self.qk_layernorm, "`qk_layernorm` must be false") qkv = self.qkv_proj(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=1) kv_seq_len = key_states.shape[-2] if past_key_value is not None: kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) # Partial rotary embedding query_rot, query_pass = ( query_states[..., : self.rotary_emb.dim], query_states[..., self.rotary_emb.dim:], ) key_rot, key_pass = ( key_states[..., : self.rotary_emb.dim], key_states[..., self.rotary_emb.dim:], ) # IPEX-LLM OPT: fuse rope use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids) # [batch_size, seq_length, num_heads, head_dim // config.partial_rotary_factor] if use_fuse_rope: query_rot, key_rot = apply_rotary_pos_emb_cache_freq_xpu(query_rot, key_rot, sin, cos, "stablelm", position_ids) else: query_rot, key_rot = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) # [batch_size, seq_length, num_heads, head_dim] query_states = torch.cat((query_rot, query_pass), dim=-1) key_states = torch.cat((key_rot, key_pass), dim=-1) invalidInputError(past_key_value is not None, "`past_key_value` cannot be None") key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, None) key_states = repeat_kv(key_states, self.num_key_value_groups) value_states = repeat_kv(value_states, self.num_key_value_groups) # Queries and keys upcast to fp32 is required by Phi-2 to avoid overflow attn_weights = torch.matmul( query_states.to(torch.float32), key_states.to(torch.float32).transpose(2, 3) ) / math.sqrt(self.head_dim) if attention_mask is not None: attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.dense(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def model_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): # IPEX-LLM OPT: kv cache but no sdp (its head_dim 80, cannot use sdp) use_cache = use_cache if use_cache is not None else self.config.use_cache if use_cache: if not isinstance(past_key_values, DynamicNormalCache): past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) return PhiModel.forward( self=self, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, )