# Whisper In this directory, you will find examples of how to use IPEX-LLM to optimize OpenAI Whisper models within the `openai-whisper` Python library. For illustration purposes, we utilize the [whisper-tiny](https://github.com/openai/whisper/blob/main/model-card.md) as a reference Whisper model. ## Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. ## Example: Recognize Tokens using `transcribe()` API In the example [recognize.py](./recognize.py), we show a basic use case for a Whisper model to conduct transcription using `transcribe()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. ### 1. Install #### 1.1 Installation on Linux We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install -U openai-whisper pip install librosa # required by audio processing ``` #### 1.2 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 libuv conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install -U openai-whisper pip install librosa ``` ### 2. Configures OneAPI environment variables for Linux > [!NOTE] > Skip this step if you are running on Windows. This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. #### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 ```
For Intel Data Center GPU Max Series ```bash export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 export ENABLE_SDP_FUSION=1 ``` > Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
For Intel iGPU ```bash export SYCL_CACHE_PERSISTENT=1 export BIGDL_LLM_XMX_DISABLED=1 ```
#### 3.2 Configurations for Windows
For Intel iGPU ```cmd set SYCL_CACHE_PERSISTENT=1 set BIGDL_LLM_XMX_DISABLED=1 ```
For Intel Arc™ A-Series Graphics ```cmd set SYCL_CACHE_PERSISTENT=1 ```
> [!NOTE] > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running examples ```bash python ./recognize.py --audio-file AUDIO_FILE ``` Arguments info: - `--model-name MODEL_NAME`: argument defining the model name(tiny, medium, base, etc.) for the Whisper model to be downloaded. It is one of the official model names listed by `whisper.available_models()`, or path to a model checkpoint containing the model dimensions and the model state_dict. It is default to be `'tiny'`. - `--audio-file AUDIO_FILE`: argument defining the path of the audio file to be recognized. - `--language LANGUAGE`: argument defining language to be transcribed. It is default to be `english`. > **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the Whisper model based on the capabilities of your machine. #### Sample Output #### [whisper-tiny](https://github.com/openai/whisper/blob/main/model-card.md) For audio file(.wav) download from https://www.youtube.com/watch?v=-LIIf7E-qFI, it should be extracted as: ```log [00:00.000 --> 00:10.000] I don't know who you are. [00:10.000 --> 00:15.000] I don't know what you want. [00:15.000 --> 00:21.000] If you're looking for ransom, I can tell you I don't know money, but what I do have. [00:21.000 --> 00:24.000] I'm a very particular set of skills. [00:24.000 --> 00:27.000] The skills I have acquired are very long career. [00:27.000 --> 00:31.000] The skills that make me a nightmare for people like you. [00:31.000 --> 00:35.000] If you let my daughter go now, that'll be the end of it. [00:35.000 --> 00:39.000] I will not look for you. I will not pursue you. [00:39.000 --> 00:45.000] But if you don't, I will look for you. I will find you. [00:45.000 --> 00:48.000] And I will kill you. [00:48.000 --> 00:53.000] Good luck. Inference time: xxxx s -------------------- Output -------------------- I don't know who you are. I don't know what you want. If you're looking for ransom, I can tell you I don't know money, but what I do have. I'm a very particular set of skills. The skills I have acquired are very long career. The skills that make me a nightmare for people like you. If you let my daughter go now, that'll be the end of it. I will not look for you. I will not pursue you. But if you don't, I will look for you. I will find you. And I will kill you. Good luck. ```