# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is adapted from # https://huggingface.co/baichuan-inc/Baichuan2-7B-Base/blob/cb7fc748b78b7ea99772e4cf76db155729ce774e/modeling_baichuan.py # and # https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat/blob/c6f8592a60b4ad73c210b28dd2ab3cca51abbf93/modeling_baichuan.py import math from typing import Optional, Tuple import torch import torch.utils.checkpoint from torch.nn import functional as F from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache from ipex_llm.transformers.models.utils import update_past_key_value from ipex_llm.transformers.models.utils import should_use_fuse_rope from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_causal from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU from ipex_llm.transformers.models.utils import mlp_fusion_check import warnings def pre_compute_inv_freq(module: torch.nn.Module): if module.__class__.__name__ == "RotaryEmbedding": inv_freq = module.inv_freq del module.inv_freq module.register_buffer("inv_freq", inv_freq, persistent=False) def baichuan_13b_rms_norm_forward(self, hidden_states): if hidden_states.device.type == "xpu" and not (self.training or hidden_states.requires_grad): import xe_addons x_2d = hidden_states.reshape(-1, hidden_states.size(-1)).contiguous() output = xe_addons.rms_norm(self.weight, x_2d, self.epsilon) return output.reshape(hidden_states.shape) input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.epsilon) return self.weight * hidden_states.to(input_dtype) def baichuan_mlp_forward( self, x: torch.Tensor, ) -> torch.Tensor: x_2d = x.view(-1, x.shape[-1]) qtype = getattr(self.gate_proj, "qtype", None) if mlp_fusion_check(x_2d, qtype, self.training) and not self.down_proj.enable_xetla: import xe_linear if not x_2d.is_contiguous(): x_2d = x_2d.contiguous() return self.down_proj(xe_linear.mlp_forward_xpu( x_2d, self.gate_proj.weight.data, self.up_proj.weight.data, x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len, SILU, qtype )) return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) def baichuan_attention_forward_7b( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ): bsz, q_len, _ = hidden_states.size() device = hidden_states.device qkv = self.W_pack(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_heads, self.num_heads], dim=1) kv_seq_len = key_states.shape[2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[2] # IPEX-LLM OPT: fuse rope if should_use_fuse_rope(hidden_states, position_ids, self.training): import xe_addons xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids, query_states, key_states) else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, "baichuan") query_states = query_states.to(hidden_states.dtype) key_states = key_states.to(hidden_states.dtype) # IPEX-LLM OPT: kv cache and quantize kv use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states) key_states, value_states = update_past_key_value( past_key_value, key_states, value_states, kv_seq_len, use_quantize_kv, device ) past_key_value = (key_states, value_states) if use_cache else None if self.training: warnings.warn("xops is not supported on Intel GPU, so just use normal implementation") # IPEX-LLM OPT: sdp attn_weights = None if not self.training and not hidden_states.requires_grad and \ use_flash_attention(query_states, key_states, attention_mask): attn_output = F.scaled_dot_product_attention(query_states.to(dtype=torch.float16), key_states.to(dtype=torch.float16), value_states.to(dtype=torch.float16), is_causal=True).to(hidden_states.dtype) elif use_sdp(q_len, kv_seq_len, self.head_dim, query_states): import xe_addons if use_quantize_kv: attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask) else: attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask) elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training): import xe_addons if use_quantize_kv: attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states, attention_mask) else: attn_output = xe_addons.sdp_causal(query_states, key_states, value_states, attention_mask) else: if use_quantize_kv: key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: attn_weights = attn_weights + attention_mask # upcast attention to fp32 attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def baichuan_attention_forward_13b( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, output_attentions: bool = False, use_cache: bool = False, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: bsz, q_len, _ = hidden_states.size() device = hidden_states.device qkv = self.W_pack(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads * 3, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_heads, self.num_heads], dim=1) kv_seq_len = key_states.shape[2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[2] # IPEX-LLM OPT: kv cache and quantize kv use_quantize_kv = use_quantize_kv_cache(self.W_pack, hidden_states) key_states, value_states = update_past_key_value( past_key_value, key_states, value_states, kv_seq_len, use_quantize_kv, device ) past_key_value = (key_states, value_states) if use_cache else None if self.training: warnings.warn("xops is not supported on Intel GPU, so just use normal implementation") if attention_mask is not None: if len(attention_mask.size()) == 4: attention_mask = attention_mask[:, :, -q_len:, :] else: attention_mask = attention_mask[None, :, -q_len:, :] if use_sdp(q_len, kv_seq_len, self.head_dim, query_states): import xe_addons if use_quantize_kv: attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask) else: attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask) attn_weights = None else: if use_quantize_kv: key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = attn_weights.to(query_states.dtype) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states) attn_output = attn_output.transpose(1, 2) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value def _get_interleave(n): def _get_interleave_power_of_2(n): start = 2 ** (-(2 ** -(math.log2(n) - 3))) ratio = start return [start * ratio**i for i in range(n)] if math.log2(n).is_integer(): return _get_interleave_power_of_2(n) else: closest_power_of_2 = 2 ** math.floor(math.log2(n)) return ( _get_interleave_power_of_2(closest_power_of_2) + _get_interleave(2 * closest_power_of_2)[0::2][: n - closest_power_of_2] ) def _fill_with_neg_inf(t): """FP16-compatible function that fills a tensor with -inf.""" return t.float().fill_(float("-inf")).type_as(t) def _buffered_future_mask(tensor, maxpos, alibi, attn_heads): _future_mask = torch.triu(_fill_with_neg_inf(torch.zeros([maxpos, maxpos])), 1) _future_mask = _future_mask.unsqueeze(0) + alibi new_future_mask = _future_mask.to(tensor) return new_future_mask[: tensor.shape[0] * attn_heads, :maxpos, :maxpos] def baichuan_13b_gen_alibi_mask(tensor, n_head, max_pos): slopes = torch.Tensor(_get_interleave(n_head)).to(tensor.dtype) position_point = torch.arange(max_pos) - max_pos + 1 position_point = position_point.unsqueeze(0).unsqueeze(0).expand(n_head, -1, -1) diag = torch.diag(position_point[0]) position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose(-1, -2) alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point alibi = alibi.view(n_head, 1, max_pos) alibi_mask = torch.triu( _fill_with_neg_inf(torch.zeros([max_pos, max_pos])), 1).to(tensor.dtype) alibi_mask = alibi_mask.unsqueeze(0) + alibi if tensor.device.type == "xpu": alibi_mask = alibi_mask.to(tensor.device) return alibi_mask MASK_BLOCK_SIZE = 512 def baichuan_13b_get_alibi_mask(self, tensor, seq_length_with_past): if self.training: slopes = torch.Tensor(_get_interleave(self.n_head)) position_point = ( torch.arange(seq_length_with_past) - seq_length_with_past + 1 ) position_point = ( position_point.unsqueeze(0) .unsqueeze(0) .expand(self.n_head, seq_length_with_past, -1) ) diag = torch.diag(position_point[0]) position_point = position_point - diag.unsqueeze(0).unsqueeze(0).transpose( -1, -2 ) alibi = slopes.unsqueeze(1).unsqueeze(1) * position_point mask = _buffered_future_mask( tensor, seq_length_with_past, alibi, self.n_head ) else: if self.first_run: # Override the default max_cache_pos=4096 for memory considerations self.max_cache_pos = seq_length_with_past + MASK_BLOCK_SIZE self.first_run = False self.register_buffer( "future_mask", baichuan_13b_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos), persistent=False, ) if seq_length_with_past > self.max_cache_pos: # When max_cache_pos is not enough for current sequence length, # increase by MASK_BLOCK_SIZE and recalculate future_mask. self.max_cache_pos = seq_length_with_past + MASK_BLOCK_SIZE self.register_buffer( "future_mask", baichuan_13b_gen_alibi_mask(tensor, self.n_head, self.max_cache_pos), persistent=False, ) mask = self.future_mask[ : self.n_head, :seq_length_with_past, :seq_length_with_past ] return mask