# InternLM2 In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on InternLM2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [internlm/internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) as a reference InternLM model. ## 0. Requirements To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a InternLM2 model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations on Intel GPUs. ### 1. Install #### 1.1 Installation on Linux We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==3.38.0 pip install einops pip install huggingface_hub ``` #### 1.2 Installation on Windows We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 libuv conda activate llm # below command will install intel_extension_for_pytorch==2.1.10+xpu as default pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ pip install transformers==3.38.0 pip install einops pip install huggingface_hub ``` ### 2. Configures OneAPI environment variables for Linux > [!NOTE] > Skip this step if you are running on Windows. This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI. ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Runtime Configurations For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device. #### 3.1 Configurations for Linux
For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 ```
For Intel Data Center GPU Max Series ```bash export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 export SYCL_CACHE_PERSISTENT=1 export ENABLE_SDP_FUSION=1 ``` > Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
For Intel iGPU ```bash export SYCL_CACHE_PERSISTENT=1 export BIGDL_LLM_XMX_DISABLED=1 ```
#### 3.2 Configurations for Windows
For Intel iGPU ```cmd set SYCL_CACHE_PERSISTENT=1 set BIGDL_LLM_XMX_DISABLED=1 ```
For Intel Arc™ A-Series Graphics ```cmd set SYCL_CACHE_PERSISTENT=1 ```
> [!NOTE] > For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile. ### 4. Running examples Setup local MODEL_PATH and run python code to download the right version of model from hugginface. ```python from huggingface_hub import snapshot_download snapshot_download(repo_id=repo_id, local_dir=MODEL_PATH, local_dir_use_symlinks=False, revision="v1.1.0") ``` Then run the example with the downloaded model ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternLM2 model (e.g. `internlm/internlm2-chat-7b`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'internlm/internlm2-chat-7b'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. #### Sample Output #### [internlm/internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) ```log Inference time: xxxx s -------------------- Prompt -------------------- <|User|>:AI是什么? <|Bot|>: -------------------- Output -------------------- <|User|>:AI是什么? <|Bot|>:AI是人工智能的缩写,是计算机科学的一个分支,旨在使计算机能够像人类一样思考、学习和执行任务。AI技术包括机器学习、自然 ``` ```log Inference time: xxxx s -------------------- Prompt -------------------- <|User|>:What is AI? <|Bot|>: -------------------- Output -------------------- <|User|>:What is AI? <|Bot|>:AI is the ability of machines to perform tasks that would normally require human intelligence, such as perception, reasoning, learning, and decision-making. AI is made possible ```