# InternLM In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on InternLM models. For illustration purposes, we utilize the [internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b) as a reference InternLM model. ## 0. Requirements To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a InternLM model to predict the next N tokens using `generate()` API, with IPEX-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: ```bash conda create -n llm python=3.11 conda activate llm pip install ipex-llm[all] # install ipex-llm with 'all' option ``` ### 2. Run ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the InternLM model to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'internlm/internlm-chat-7b'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. > **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the InternLM model based on the capabilities of your machine. #### 2.1 Client On client Windows machine, it is recommended to run directly with full utilization of all cores: ```powershell python ./generate.py ``` #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. E.g. on Linux, ```bash # set IPEX-LLM env variables source ipex-llm-init # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 numactl -C 0-47 -m 0 python ./generate.py ``` #### 2.3 Sample Output #### [internlm/internlm-chat-7b](https://huggingface.co/internlm/internlm-chat-7b) ```log Inference time: xxxx s -------------------- Prompt -------------------- <|User|>:AI是什么? <|Bot|>: -------------------- Output -------------------- <|User|>:AI是什么? <|Bot|>:AI是人工智能的缩写,是计算机科学的一个分支,旨在开发能够执行人类智能任务的算法和计算机程序。AI可以执行各种任务,包括语音 ``` ```log Inference time: xxxx s -------------------- Prompt -------------------- <|User|>:What is AI? <|Bot|>: -------------------- Output -------------------- <|User|>:What is AI? <|Bot|>:AI is the ability of machines to perform tasks that would normally require human intelligence, such as perception, reasoning, learning, and decision-making. AI is made possible ```