# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from ipex_llm.transformers.npu_model import AutoModelForCausalLM from transformers import AutoTokenizer from transformers.utils import logging logger = logging.get_logger(__name__) def get_prompt(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> str: texts = [f'[INST] <>\n{system_prompt}\n<>\n\n'] # The first user input is _not_ stripped do_strip = False for user_input, response in chat_history: user_input = user_input.strip() if do_strip else user_input do_strip = True texts.append(f'{user_input} [/INST] {response.strip()} [INST] ') message = message.strip() if do_strip else message texts.append(f'{message} [/INST]') return ''.join(texts) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Predict Tokens using `generate()` API for npu model" ) parser.add_argument( "--repo-id-or-model-path", type=str, default="meta-llama/Llama-2-7b-chat-hf", help="The huggingface repo id for the Llama2 model to be downloaded" ", or the path to the huggingface checkpoint folder", ) parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument("--n-predict", type=int, default=32, help="Max tokens to predict") parser.add_argument("--max-context-len", type=int, default=1024) parser.add_argument("--max-prompt-len", type=int, default=960) parser.add_argument("--disable-transpose-value-cache", action="store_true", default=False) args = parser.parse_args() model_path = args.repo_id_or_model_path model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, pipeline=True, max_context_len=args.max_context_len, max_prompt_len=args.max_prompt_len, torch_dtype=torch.float16, attn_implementation="eager", transpose_value_cache=not args.disable_transpose_value_cache) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) DEFAULT_SYSTEM_PROMPT = """\ """ print("-" * 80) print("done") with torch.inference_mode(): print("finish to load") for i in range(5): prompt = get_prompt(args.prompt, [], system_prompt=DEFAULT_SYSTEM_PROMPT) _input_ids = tokenizer.encode(prompt, return_tensors="pt") print("input length:", len(_input_ids[0])) st = time.time() output = model.generate( _input_ids, max_new_tokens=args.n_predict, do_print=True ) end = time.time() print(f"Inference time: {end-st} s") input_str = tokenizer.decode(_input_ids[0], skip_special_tokens=False) print("-" * 20, "Input", "-" * 20) print(input_str) output_str = tokenizer.decode(output[0], skip_special_tokens=False) print("-" * 20, "Output", "-" * 20) print(output_str) print("-" * 80) print("done") print("success shut down")