# Run ModelScope Model In this directory, you will find example on how you could apply BigDL-LLM INT4 optimizations on ModelScope models. For illustration purposes, we utilize the [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) as a reference ModelScope model. ## 0. Requirements To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a ChatGLM3 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: ```bash conda create -n llm python=3.9 conda activate llm pip install --pre --upgrade bigdl-llm[all] # install bigdl-llm with 'all' option # Refer to https://github.com/modelscope/modelscope/issues/765, please make sure you are using 1.11.0 version pip install modelscope==1.11.0 ``` ### 2. Run ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the ModelScope repo id for the ModelScope ChatGLM3 model to be downloaded, or the path to the ModelScope checkpoint folder. It is default to be `'ZhipuAI/chatglm3-6b'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'AI是什么?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. > **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the ChatGLM3 model based on the capabilities of your machine. #### 2.1 Client On client Windows machine, it is recommended to run directly with full utilization of all cores: ```powershell python ./generate.py ``` #### 2.2 Server For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket. E.g. on Linux, ```bash # set BigDL-LLM env variables source bigdl-llm-init # e.g. for a server with 48 cores per socket export OMP_NUM_THREADS=48 numactl -C 0-47 -m 0 python ./generate.py ``` #### 2.3 Sample Output #### [ZhipuAI/chatglm3-6b](https://modelscope.cn/models/ZhipuAI/chatglm3-6b/summary) ```log Inference time: xxxx s -------------------- Prompt -------------------- <|user|> AI是什么? <|assistant|> -------------------- Output -------------------- [gMASK]sop <|user|> AI是什么? <|assistant|> AI是人工智能(Artificial Intelligence)的缩写,指的是通过计算机程序和算法模拟人类智能的技术。AI可以帮助我们解决各种问题,例如语音 ``` ```log Inference time: xxxx s -------------------- Prompt -------------------- <|user|> What is AI? <|assistant|> -------------------- Output -------------------- [gMASK]sop <|user|> What is AI? <|assistant|> AI stands for Artificial Intelligence. It refers to the development of computer systems that can perform tasks that would normally require human intelligence, such as recognizing speech or making ```