# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import time import argparse from ipex_llm.transformers import AutoModelForCausalLM if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for MiniCPM3 model') parser.add_argument('--repo-id-or-model-path', type=str, help='The Hugging Face or ModelScope repo id for the MiniCPM3 model to be downloaded' ', or the path to the checkpoint folder') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') parser.add_argument('--modelscope', action="store_true", default=False, help="Use models from modelscope") args = parser.parse_args() if args.modelscope: from modelscope import AutoTokenizer model_hub = 'modelscope' else: from transformers import AutoTokenizer model_hub = 'huggingface' model_path = args.repo_id_or_model_path if args.repo_id_or_model_path else \ ("OpenBMB/MiniCPM3-4B" if args.modelscope else "openbmb/MiniCPM3-4B") # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function. # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU. model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, optimize_model=True, use_cache=True, model_hub=model_hub) model = model.half().to('xpu') # Load tokenizer tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): # here the prompt formatting refers to: https://huggingface.co/openbmb/MiniCPM3-4B#inference-with-transformers chat = [ { "role": "user", "content": args.prompt }, ] prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu') # ipex_llm model needs a warmup, then inference time can be accurate output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict) # start inference st = time.time() output = model.generate(input_ids, do_sample=False, max_new_tokens=args.n_predict) torch.xpu.synchronize() end = time.time() output_str = tokenizer.decode(output[0], skip_special_tokens=False) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str)