# Databricks User Guide --- You can run BigDL program on the [Databricks](https://databricks.com/) cluster as follows. ### **1. Create a Databricks Cluster** - Create either an [AWS Databricks](https://docs.databricks.com/getting-started/try-databricks.html) workspace or an [Azure Databricks](https://docs.microsoft.com/en-us/azure/azure-databricks/) workspace. - Create a Databricks [cluster](https://docs.databricks.com/clusters/create.html) using the UI. Choose Databricks runtime version. This guide is tested on Runtime 9.1 LTS (includes Apache Spark 3.1.2, Scala 2.12). ![](images/create-cluster.png) ### 2. Generate initialization script [Init script](https://learn.microsoft.com/en-us/azure/databricks/clusters/init-scripts) is used to Install BigDL or other libraries. First, you need to put the **init script** into [DBFS](https://docs.databricks.com/dbfs/index.html), you can use one of the following ways. **a. Generate init script in Databricks notebook** Create a Databricks notebook and execute ```python init_script = """ #!/bin/bash # install bigdl-orca, add other bigdl modules if you need /databricks/python/bin/pip install pip install --pre --upgrade bigdl-orca-spark3[ray] # install other necessary libraries, here we install libraries needed in this tutorial /databricks/python/bin/pip install tensorflow==2.9.1 /databricks/python/bin/pip install tqdm /databricks/python/bin/pip install torch==1.11.0+cpu torchvision==0.12.0+cpu tensorboard -f https://download.pytorch.org/whl/torch_stable.html # copy bigdl jars to databricks cp /databricks/python/lib/python3.8/site-packages/bigdl/share/*/lib/*.jar /databricks/jars """ # Change the first parameter to your DBFS path dbutils.fs.put("dbfs:/FileStore/scripts/init.sh", init_script, True) ``` To make sure the init script is in DBFS, in the left panel, click **Data > DBFS > check your script save path**. > if you do not see DBFS in your panel, see [Appendix A](#appendix-a). **b. Create init script in local and upload to DBFS** Create a file **init.sh**(or any other filename) in your computer, the file content is ```bash #!/bin/bash # install bigdl-orca, add other bigdl modules if you need /databricks/python/bin/pip install pip install --pre --upgrade bigdl-orca-spark3[ray] # install other necessary libraries, here we install libraries needed in this tutorial /databricks/python/bin/pip install tensorflow==2.9.1 /databricks/python/bin/pip install tqdm /databricks/python/bin/pip install torch==1.11.0+cpu torchvision==0.12.0+cpu tensorboard -f https://download.pytorch.org/whl/torch_stable.html # copy bigdl jars to databricks cp /databricks/python/lib/python3.8/site-packages/bigdl/share/*/lib/*.jar /databricks/jars ``` Then upload **init.sh** to DBFS. In Databricks left panel, click **Data > DBFS > Choose or create upload directory > Right click > Upload here**. ![](images/upload-init-script.png) Now the init script is in DBFS, right click the init.sh and choose **Copy path**, copy the **Spark API Format** path. ![](images/copy-script-path.png) ### 3. Set Spark configuration In the left panel, click **Compute > Choose your cluster > edit > Advanced options > Spark > Confirm**. You can provide custom [Spark configuration properties](https://spark.apache.org/docs/latest/configuration.html) in a cluster configuration. Please set it according to your cluster resource and program needs. ![](images/spark-config.png) See below for an example of Spark config setting **needed** by BigDL. Here it sets 2 core per executor. Note that "spark.cores.max" needs to be properly set below. ``` spark.executor.cores 2 spark.cores.max 4 ``` ### 4. Install BigDL Libraries Use the init script from [step 2](#2-generate-initialization-script) to install BigDL libraries. In the left panel, click **Compute > Choose your cluster > edit > Advanced options > Init Scripts > Paste init script path > Add > Confirm**. ![](images/config-init-script.png) Then start or restart the cluster. After starting/restarting the cluster, the libraries specified in the init script are all installed. ### **5. Run BigDL on Databricks** Open a new notebook, and call `init_orca_context` at the beginning of your code (with `cluster_mode` set to "spark-submit"). ```python from bigdl.orca import init_orca_context, stop_orca_context init_orca_context(cluster_mode="spark-submit") ``` Output on Databricks: ![](images/init-orca-context.png) **Run Examples** - [Keras example on Databricks](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/databricks/tf_keras_ncf.ipynb) - [Pytorch example on Databricks](https://github.com/intel-analytics/BigDL/blob/main/python/orca/tutorial/databricks/pytorch_fashion_mnist.ipynb) > Note that if you want to save model to DBFS, or load model from DBFS, the save/load path should be the **File API Format** on Databricks, which means your save/load path should start with `/dbfs`. ### **6. Other ways to install third-party libraries on Databricks if necessary** If you want to use other ways to install third-party libraries, check related Databricks documentation of [libraries for AWS Databricks](https://docs.databricks.com/libraries/index.html) and [libraries for Azure Databricks](https://docs.microsoft.com/en-us/azure/databricks/libraries/). ### Appendix A If there is no DBFS in your panel, go to **User profile > Admin Console > Workspace settings > Advanced > Enabled DBFS File Browser** ![](images/dbfs.png) ### Appendix B Use **Databricks CLI** to upload file to DBFS. When you upload a large file to DBFS, using Databricks CLI could be faster than using the Databricks web UI. **Install and config Azure Databricks CLI** 1. Install Python, need Python version 2.7.9 and above if you’re using Python 2 or Python 3.6 and above if you’re using Python 3. 2. Run `pip install databricks-cli` 3. Set authentication, Click **user profile icon > User Settings > Access tokens > Generate new token > generate > copy the token**, make sure to **copy** the token and store it in a secure location, **it won't show again**. ![](images/token.png) 4. Copy the URL of Databricks host, the format is `https://adb-..azuredatabricks.net`, you can copy it from your Databricks web page URL. ![](images/url.png) 5. In cmd run `dbfs config --token` as shown below: ``` dbfs configure --token Databricks Host (should begin with https://): https://your.url.from.step.4 Token: your-token-from-step-3 ``` 6. Verify whether you are able to connect to DBFS, run "databricks fs ls". ![](images/verify-dbfs.png) **Upload through Databricks CLI** Now, we can use Databricks CLI to upload file to DBFS. run command: ``` dbfs cp /your/local/filepath/bigdl-assembly-spark_3.1.2-2.1.0-SNAPSHOT-jar-with-dependencies.jar dbfs:/FileStore/jars/stable/bigdl-assembly-spark_3.1.2-2.1.0-SNAPSHOT-jar-with-dependencies.jar ``` After command finished, check DBFS in Databricks, in left panel, click **Data > DBFS > your upload directory**, if you do not see DBFS in your panel, see [Appendix A](#appendix-a). **Install package from DBFS** In the left panel, click **Compute > choose your cluster > Libraries > Install new > Library Source(DBFS/ADLS) > Library Type(your package type)**. ![](images/install-zip.png)