# AWQ This example shows how to directly run 4-bit AWQ models using BigDL-LLM on Intel GPU. ## Verified Models - [Llama-2-7B-Chat-AWQ](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ) - [CodeLlama-7B-AWQ](https://huggingface.co/TheBloke/CodeLlama-7B-AWQ) - [Mistral-7B-Instruct-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-Instruct-v0.1-AWQ) - [Mistral-7B-v0.1-AWQ](https://huggingface.co/TheBloke/Mistral-7B-v0.1-AWQ) - [vicuna-7B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-7B-v1.5-AWQ) - [vicuna-13B-v1.5-AWQ](https://huggingface.co/TheBloke/vicuna-13B-v1.5-AWQ) - [llava-v1.5-13B-AWQ](https://huggingface.co/TheBloke/llava-v1.5-13B-AWQ) - [Yi-6B-AWQ](https://huggingface.co/TheBloke/Yi-6B-AWQ) - [Yi-34B-AWQ](https://huggingface.co/TheBloke/Yi-34B-AWQ) ## Requirements To run these examples with BigDL-LLM, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information. ## Example: Predict Tokens using `generate()` API In the example [generate.py](./generate.py), we show a basic use case for a AWQ model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations. ### 1. Install We suggest using conda to manage environment: ```bash conda create -n llm python=3.9 conda activate llm pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu pip install transformers==4.35.0 pip install autoawq==0.1.6 --no-deps pip install accelerate==0.24.1 pip install einops ``` ### 2. Configures OneAPI environment variables ```bash source /opt/intel/oneapi/setvars.sh ``` ### 3. Run For optimal performance on Arc, it is recommended to set several environment variables. ```bash export USE_XETLA=OFF export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1 ``` ``` python ./generate.py --repo-id-or-model-path REPO_ID_OR_MODEL_PATH --prompt PROMPT --n-predict N_PREDICT ``` Arguments info: - `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the AWQ model (e.g. `TheBloke/Llama-2-7B-Chat-AWQ`, `TheBloke/Mistral-7B-Instruct-v0.1-AWQ`, `TheBloke/Mistral-7B-v0.1-AWQ`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'TheBloke/Llama-2-7B-Chat-AWQ'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. > **Note**: When loading the model in 4-bit, BigDL-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference. > > Please select the appropriate size of the Llama2 model based on the capabilities of your machine. #### 2.3 Sample Output #### ["TheBloke/Llama-2-7B-Chat-AWQ"](https://huggingface.co/TheBloke/Llama-2-7B-Chat-AWQ) ```log Inference time: xxxx s -------------------- Prompt -------------------- ### HUMAN: What is AI? ### RESPONSE: -------------------- Output -------------------- ### HUMAN: What is AI? ### RESPONSE: Artificial intelligence (AI) is the ability of machines to perform tasks that typically require human intelligence, such as learning, problem-solving, decision ```