# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # this code is to support converting of model in load bit # for performance tests using load_low_bit import omegaconf import time import os import sys import gc from run import LLAMA_IDS, CHATGLM_IDS, LLAVA_IDS, get_model_path current_dir = os.path.dirname(os.path.realpath(__file__)) def save_model_in_low_bit(repo_id, local_model_hub, low_bit): from ipex_llm.transformers import AutoModel, AutoModelForCausalLM from transformers import AutoTokenizer, LlamaTokenizer model_path = get_model_path(repo_id, local_model_hub) # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format st = time.perf_counter() if repo_id in CHATGLM_IDS: model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, trust_remote_code=True, use_cache=True).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) elif repo_id in LLAMA_IDS: model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, use_cache=True).eval() tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) elif repo_id in LLAVA_IDS: llava_repo_dir = os.environ.get('LLAVA_REPO_DIR') sys.path.append(rf"{llava_repo_dir}") from llava.model.language_model.llava_llama import LlavaLlamaForCausalLM model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True, trust_remote_code=True, use_cache=True).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) else: model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit, trust_remote_code=True, use_cache=True).eval() tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) end = time.perf_counter() print(">> loading of and converting of model costs {}s".format(end - st)) model.save_low_bit(model_path+'-'+low_bit) tokenizer.save_pretrained(model_path+'-'+low_bit) del model gc.collect() if __name__ == '__main__': from omegaconf import OmegaConf conf = OmegaConf.load(f'{current_dir}/config.yaml') for model in conf.repo_id: save_model_in_low_bit(repo_id=model, local_model_hub=conf['local_model_hub'], low_bit=conf['low_bit'])