## Build/Use BigDL-LLM xpu image ### Build Image ```bash docker build \ --build-arg http_proxy=.. \ --build-arg https_proxy=.. \ --build-arg no_proxy=.. \ --rm --no-cache -t intelanalytics/bigdl-llm-xpu:2.5.0-SNAPSHOT . ``` ### Use the image for doing xpu inference To map the `xpu` into the container, you need to specify `--device=/dev/dri` when booting the container. An example could be: ```bash #/bin/bash export DOCKER_IMAGE=intelanalytics/bigdl-llm-xpu:2.5.0-SNAPSHOT sudo docker run -itd \ --net=host \ --device=/dev/dri \ --memory="32G" \ --name=CONTAINER_NAME \ --shm-size="16g" \ $DOCKER_IMAGE ``` After the container is booted, you could get into the container through `docker exec`. To verify the device is successfully mapped into the container, run `sycl-ls` to check the result. In a machine with Arc A770, the sampled output is: ```bash root@arda-arc12:/# sycl-ls [opencl:acc:0] Intel(R) FPGA Emulation Platform for OpenCL(TM), Intel(R) FPGA Emulation Device 1.2 [2023.16.7.0.21_160000] [opencl:cpu:1] Intel(R) OpenCL, 13th Gen Intel(R) Core(TM) i9-13900K 3.0 [2023.16.7.0.21_160000] [opencl:gpu:2] Intel(R) OpenCL Graphics, Intel(R) Arc(TM) A770 Graphics 3.0 [23.17.26241.33] [ext_oneapi_level_zero:gpu:0] Intel(R) Level-Zero, Intel(R) Arc(TM) A770 Graphics 1.3 [1.3.26241] ``` To run inference using `BigDL-LLM` using xpu, you could refer to this [documentation](https://github.com/intel-analytics/BigDL/tree/main/python/llm/example/GPU).