#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import time
import intel_extension_for_pytorch as ipex
import argparse
import numpy as np
import inquirer
import sounddevice
from bigdl.llm.transformers import AutoModelForCausalLM
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
from transformers import LlamaTokenizer
from transformers import WhisperProcessor
from transformers import TextStreamer
from colorama import Fore
import speech_recognition as sr
from datasets import load_dataset
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
DEFAULT_SYSTEM_PROMPT = """\
"""
def get_prompt(message: str, chat_history: list[tuple[str, str]],
               system_prompt: str) -> str:
    texts = [f'[INST] <>\n{system_prompt}\n<>\n\n']
    # The first user input is _not_ stripped
    do_strip = False
    for user_input, response in chat_history:
        user_input = user_input.strip() if do_strip else user_input
        do_strip = True
        texts.append(f'{user_input} [/INST] {response.strip()} [INST] ')
    message = message.strip() if do_strip else message
    texts.append(f'{message} [/INST]')
    return ''.join(texts)
if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
    parser.add_argument('--llama2-repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
                        help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
                             ', or the path to the huggingface checkpoint folder')
    parser.add_argument('--whisper-repo-id-or-model-path', type=str, default="openai/whisper-small",
                        help='The huggingface repo id for the Whisper (e.g. `openai/whisper-small` and `openai/whisper-medium`) to be downloaded'
                             ', or the path to the huggingface checkpoint folder')
    parser.add_argument('--n-predict', type=int, default=32,
                        help='Max tokens to predict')
    args = parser.parse_args()
    # Select device
    mics = sr.Microphone.list_microphone_names()
    mics.insert(0, "Default")
    questions = [
        inquirer.List('device_name',
                      message="Which microphone do you choose?",
                      choices=mics)
    ]
    answers = inquirer.prompt(questions)
    device_name = answers['device_name']
    idx = mics.index(device_name)
    device_index = None if idx == 0 else idx - 1
    print(f"The device name {device_name} is selected.")
    whisper_model_path = args.whisper_repo_id_or_model_path
    llama_model_path = args.llama2_repo_id_or_model_path
    dataset_path = "hf-internal-testing/librispeech_asr_dummy"
    # Load dummy dataset and read audio files
    ds = load_dataset(dataset_path, "clean", split="validation")
    print("Converting and loading models...")
    processor = WhisperProcessor.from_pretrained(whisper_model_path)
    # generate token ids
    whisper =  AutoModelForSpeechSeq2Seq.from_pretrained(whisper_model_path, load_in_4bit=True, optimize_model=False, use_cache=True)
    whisper.config.forced_decoder_ids = None
    whisper = whisper.to('xpu')
    
    llama_model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True, trust_remote_code=True, optimize_model=False, use_cache=True)
    llama_model = llama_model.to('xpu')
    tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
    r = sr.Recognizer()
    with torch.inference_mode():
        # warm up
        sample = ds[2]["audio"]
        input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
        input_features = input_features.contiguous().to('xpu')
        torch.xpu.synchronize()
        predicted_ids = whisper.generate(input_features)
        torch.xpu.synchronize()
        output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
        output_str = output_str[0]
        input_ids = tokenizer.encode(output_str, return_tensors="pt").to('xpu')
        output = llama_model.generate(input_ids, do_sample=False, max_new_tokens=32)
        output_str = tokenizer.decode(output[0], skip_special_tokens=True)
        torch.xpu.synchronize()
        with sr.Microphone(device_index=device_index, sample_rate=16000) as source:
            print("Calibrating...")
            r.adjust_for_ambient_noise(source, duration=5)
            
            while 1:
                print(Fore.YELLOW + "Listening now..." + Fore.RESET)
                try:
                    audio = r.listen(source, timeout=5, phrase_time_limit=30)
                    # refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63
                    frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
                    print("Recognizing...")
                    input_features = processor(frame_data, sampling_rate=audio.sample_rate, return_tensors="pt").input_features
                    input_features = input_features.contiguous().to('xpu')
                except Exception as e:
                    unrecognized_speech_text = (
                        f"Sorry, I didn't catch that. Exception was: \n {e}"
                    )
                    print(unrecognized_speech_text)
                predicted_ids = whisper.generate(input_features)
                output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
                output_str = output_str[0]
                print("\n" + Fore.GREEN + "Whisper : " + Fore.RESET + "\n" + output_str)
                print("\n" + Fore.BLUE + "BigDL-LLM: " + Fore.RESET)
                prompt = get_prompt(output_str, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
                input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
                streamer = TextStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
                _ = llama_model.generate(input_ids, streamer=streamer, do_sample=False, max_new_tokens=args.n_predict)