# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # this code is copied from llama2 example test, and added performance test import torch import time import argparse from bigdl.llm.transformers import AutoModelForCausalLM from transformers import LlamaTokenizer import os benchmark_util_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..') import sys sys.path.append(benchmark_util_path) from benchmark_util import BenchmarkWrapper # you could tune the prompt based on your own model, # here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style LLAMA2_PROMPT_FORMAT = """### HUMAN: {prompt} ### RESPONSE: """ if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model') parser.add_argument('--repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf", help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded' ', or the path to the huggingface checkpoint folder') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, help='Max tokens to predict') args = parser.parse_args() model_path = args.repo_id_or_model_path # Load model in 4 bit, # which convert the relevant layers in the model into INT4 format model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True) model = BenchmarkWrapper(model, do_print=False) # Load tokenizer tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True) # Generate predicted tokens with torch.inference_mode(): prompt = LLAMA2_PROMPT_FORMAT.format(prompt=args.prompt) input_ids = tokenizer.encode(prompt, return_tensors="pt") st = time.time() # if your selected model is capable of utilizing previous key/value attentions # to enhance decoding speed, but has `"use_cache": false` in its model config, # it is important to set `use_cache=True` explicitly in the `generate` function # to obtain optimal performance with BigDL-LLM INT4 optimizations output = model.generate(input_ids, max_new_tokens=args.n_predict) end = time.time() output_str = tokenizer.decode(output[0], skip_special_tokens=True) print(f'Inference time: {end-st} s') print('-'*20, 'Prompt', '-'*20) print(prompt) print('-'*20, 'Output', '-'*20) print(output_str) assert "AI is a term" in output_str, "output is not as expected, the correctness may be wrong." llama2_baseline = os.getenv('LLAMA2_BASELINE') if llama2_baseline is None: print('baseline is not set, skipping baseline validation') else: llama2_baseline = float(llama2_baseline) ratio = model.rest_cost_mean / llama2_baseline assert ratio < 1.1, f"performance did not meet baseline, the cost is {(ratio - 1) * 100}% higher than the baseline"