# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import argparse import sys # todo: support more model class from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig from transformers import TextIteratorStreamer from transformers.tools.agents import StopSequenceCriteria from transformers.generation.stopping_criteria import StoppingCriteriaList from colorama import Fore from bigdl.llm import optimize_model SYSTEM_PROMPT = "A chat between a curious human and an artificial intelligence assistant .\ The assistant gives helpful, detailed, and polite answers to the human's questions." HUMAN_ID = "" BOT_ID = "" # chat_history formated in [(iput_str, output_str)] def format_prompt(input_str, chat_history): prompt = [f"{SYSTEM_PROMPT}\n"] for history_input_str, history_output_str in chat_history: prompt.append(f"{HUMAN_ID} {history_input_str}\n{BOT_ID} {history_output_str}\n") prompt.append(f"{HUMAN_ID} {input_str}\n{BOT_ID} ") return "".join(prompt) def stream_chat(model, tokenizer, stopping_criteria, input_str, chat_history): prompt = format_prompt(input_str, chat_history) # print(prompt) input_ids = tokenizer([prompt], return_tensors="pt") streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict(input_ids, streamer=streamer, max_new_tokens=512, stopping_criteria=stopping_criteria) from threading import Thread # to ensure non-blocking access to the generated text, generation process should be ran in a separate thread thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() output_str = [] print(Fore.BLUE+"BigDL-LLM: "+Fore.RESET, end="") for partial_output_str in streamer: output_str.append(partial_output_str) # remove the last HUMAN_ID if exists print(partial_output_str.replace(f"{HUMAN_ID}", ""), end="") chat_history.append((input_str, "".join(output_str).replace(f"{HUMAN_ID}", "").rstrip())) def auto_select_model(model_name): try: try: model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype="auto", trust_remote_code=True, use_cache=True) except: model = AutoModel.from_pretrained(model_path, low_cpu_mem_usage=True, torch_dtype="auto", trust_remote_code=True, use_cache=True) except: print("Sorry, the model you entered is not supported in installer.") sys.exit() return model if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, help="path to an llm") args = parser.parse_args() model_path = args.model_path model = auto_select_model(model_path) model = optimize_model(model) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) stopping_criteria = StoppingCriteriaList([StopSequenceCriteria(HUMAN_ID, tokenizer)]) chat_history = [] while True: with torch.inference_mode(): user_input = input(Fore.GREEN+"\nHuman: "+Fore.RESET) if user_input == "stop": # let's stop the conversation when user input "stop" break stream_chat(model=model, tokenizer=tokenizer, stopping_criteria=stopping_criteria, input_str=user_input, chat_history=chat_history)