# Harness Evaluation [Harness evaluation](https://github.com/EleutherAI/lm-evaluation-harness) allows users to eaisly get accuracy on various datasets. Here we have enabled harness evaluation with BigDL-LLM under [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) settings. Before running, make sure to have [bigdl-llm](../../../README.md) installed. ## Install Harness ```bash git clone https://github.com/EleutherAI/lm-evaluation-harness.git cd lm-evaluation-harness git checkout b281b09 pip install -e . ``` ## Run run `python run_llb.py`. `run_llb.py` combines some arguments in `main.py` to make evaluations easier. The mapping of arguments is defined as a dict in [`llb.py`](llb.py). ### Evaluation on CPU ```python python run_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 sym_int4 nf4 --device cpu --tasks hellaswag arc mmlu truthfulqa --batch 1 --no_cache ``` ### Evaluation on Intel GPU ```python python run_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 sym_int4 nf4 --device xpu --tasks hellaswag arc mmlu truthfulqa --batch 1 --no_cache ``` ### Evaluation using multiple Intel GPU ```python python run_multi_llb.py --model bigdl-llm --pretrained /path/to/model --precision nf3 sym_int4 nf4 --device xpu:0,2,3 --tasks hellaswag arc mmlu truthfulqa --batch 1 --no_cache ``` Taking example above, the script will fork 3 processes, each for one xpu, to execute the tasks. ## Results We follow [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) to record our metrics, `acc_norm` for `hellaswag` and `arc_challenge`, `mc2` for `truthful_qa` and `acc` for `mmlu`. For `mmlu`, there are 57 subtasks which means users may need to average them manually to get final result. ## Summarize the results """python python make_table.py """