# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this file is adapted from # https://github.com/huggingface/transformers/blob/main/src/transformers/models/mistral/modeling_mistral.py # # Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. # # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX # and OPT implementations in this library. It has been modified from its # original forms to accommodate minor architectural differences compared # to GPT-NeoX and OPT used by the Meta AI team that trained the model. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Tuple, Union, List import os import torch from transformers.cache_utils import Cache from transformers.modeling_outputs import BaseModelOutputWithPast from transformers.models.mistral.modeling_mistral import MistralModel, MistralAttention from ipex_llm.transformers.models.common import merge_qkv_base from ipex_llm.transformers.models.common import scaled_dot_product_attention from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36 from ipex_llm.transformers.models.utils import use_quantize_kv_cache from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache from ipex_llm.transformers.kv import DynamicCompressCache, DynamicCompressFp8Cache KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256)) def mistral_model_forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: # ipex-llm changes start # IPEX-LLM OPT: kv cache and quantize kv cache inputs = input_ids if input_ids is not None else inputs_embeds use_cache = use_cache if use_cache is not None else self.config.use_cache use_cache = use_cache or inputs.device.type == 'xpu' use_quantize_kv = use_quantize_kv_cache(self.layers[0].mlp.down_proj, inputs, self.config.num_attention_heads, self.config.num_key_value_heads) use_compress_kv = should_use_compresskv(inputs, inputs.size(1)) or \ isinstance(past_key_values, DynamicCompressCache) if use_cache: if use_compress_kv and not isinstance(past_key_values, DynamicCompressCache): if use_quantize_kv: past_key_values = DynamicCompressFp8Cache.from_legacy_cache(past_key_values) else: past_key_values = DynamicCompressCache.from_legacy_cache(past_key_values) elif use_quantize_kv and not isinstance(past_key_values, DynamicFp8Cache): past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values) elif ( not use_quantize_kv and not use_compress_kv and not isinstance(past_key_values, DynamicNormalCache) ): past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values) # ipex-llm changes end return MistralModel.forward( self=self, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict ) def merge_qkv(module: torch.nn.Module): merge_qkv_base(module, MistralAttention) def mistral_attention_forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: bool = False, use_cache: bool = False, **kwargs, ): bsz, q_len, _ = hidden_states.size() qkv = self.qkv_proj(hidden_states) qkv = qkv.view(bsz, q_len, self.num_heads + 2 * self.num_key_value_heads, self.head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([self.num_heads, self.num_key_value_heads, self.num_key_value_heads], dim=1) kv_seq_len = key_states.shape[-2] kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx) # IPEX OPT: fuse rope if should_use_fuse_rope(hidden_states, position_ids, self.training): import xe_addons xe_addons.rotary_half_inplaced(self.rotary_emb.inv_freq, position_ids, query_states, key_states) else: cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids, "mistral") if isinstance(past_key_value, DynamicCompressCache): enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, q_len) key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, query_states, attention_mask, self.num_key_value_groups, self.config, enough_kv_room, KV_CACHE_ALLOC_BLOCK_LENGTH ) else: key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, None) # IPEX-LLM OPT: sdpa attn_weights = None attn_output = scaled_dot_product_attention( query_states, key_states, value_states, attention_mask, q_len == kv_seq_len ) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights, past_key_value