# # Copyright 2016 The BigDL Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This file is adapted from # https://huggingface.co/THUDM/glm-4v-9b/blob/main/modeling_chatglm.py # import torch from typing import Optional, Tuple, Union from ipex_llm.transformers.models.utils import restore_fp8_kv_cache, update_past_key_value from ipex_llm.transformers.models.utils import use_quantize_kv_cache, use_sdp, use_sdp_causal from ipex_llm.transformers.models.utils import should_use_fuse_rope, apply_rotary_pos_emb from ipex_llm.transformers.models.chatglm2 import repeat_kv from ipex_llm.utils.common import invalidInputError from transformers.modeling_outputs import BaseModelOutputWithPast import math from typing import List # copied from https://huggingface.co/THUDM/glm-4v-9b/blob/main/modeling_chatglm.py#L753 def is_empty(images_list: Optional[List[List[torch.Tensor]]]): if images_list is None or len(images_list) == 0: return True for image_list in images_list: if image_list is not None: return False return True def chatglm4v_model_forward( self, input_ids: torch.LongTensor = None, images: torch.Tensor = None, position_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.BoolTensor] = None, full_attention_mask: Optional[torch.BoolTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]=None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPast]: # generate mode with past_key_values. the image features are already mapped if past_key_values is None: # not allow for inputs_embeds, because we want to process image feature if not is_empty(images) and input_ids is not None: # multi-modality image_size: int = self.config.vision_config['image_size'] patch_size: int = self.config.vision_config['patch_size'] num_patches = (image_size // patch_size // 2) ** 2 invalidInputError(len(input_ids) == len(images), f"{len(input_ids)} should equal to {len(images)}") inputs_embeds = self.embedding(input_ids) images = images.to(dtype=inputs_embeds.dtype) images_features = self.vision(images) if position_ids is None: position_ids = self.get_position_ids(input_ids, device=inputs_embeds.device) new_input_embeds, new_position_ids = [], [] for i in range(len(input_ids)): input_id = input_ids[i].tolist() boi_token_pos = input_id.index(self.config.boi_token_id) eoi_token_pos = input_id.index(self.config.eoi_token_id) invalidInputError(eoi_token_pos - boi_token_pos == 2, "eoi_token_pos - boi_token_pos should equal to 2, but got" f"{eoi_token_pos} - {boi_token_pos} = " f"{eoi_token_pos - boi_token_pos}") new_input_embeds.append(torch.cat( (inputs_embeds[i, :boi_token_pos], images_features[i].to(inputs_embeds.device), inputs_embeds[i, eoi_token_pos + 1:]))) new_position_ids.append(torch.cat( (position_ids[i, :boi_token_pos + 1], position_ids[i, boi_token_pos + 1].repeat(num_patches), position_ids[i, eoi_token_pos:]) )) inputs_embeds = torch.stack(new_input_embeds, dim=0) position_ids = torch.stack(new_position_ids, dim=0) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if inputs_embeds is None: batch_size, seq_length = input_ids.shape inputs_embeds = self.embedding(input_ids) else: batch_size, seq_length, _ = inputs_embeds.shape input_ids = torch.empty((batch_size, seq_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device) if full_attention_mask is None: if (attention_mask is not None and not attention_mask.all()) or\ (past_key_values and seq_length != 1): full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) # ipex-llm changes begin # 1. replace `rotary_pos_emb` with `inv_freq` and `position_ids` # 2. generate `causal_mask` and replace `full_attention_mask` with it if position_ids is None: if past_key_values is None: position_ids = torch.arange(seq_length, dtype=torch.int64, device=inputs_embeds.device) else: kv_length = past_key_values[0][0].size(2) position_ids = torch.arange(kv_length, kv_length + seq_length, dtype=torch.int64, device=inputs_embeds.device) position_ids = position_ids.repeat(batch_size, 1) if not getattr(self.rotary_pos_emb, "cached", False): rot_dim = self.rotary_pos_emb.dim base = 10000 * getattr(self.rotary_pos_emb, "rope_ratio", 1) # We should generate float inv_freq to avoid overflow, as base is too large. inv_freq = 1.0 / (base ** (torch.arange(0, rot_dim, 2, dtype=torch.float, device=inputs_embeds.device) / rot_dim)) inv_freq = inv_freq.to(inputs_embeds.dtype) self.rotary_pos_emb.register_buffer("inv_freq", inv_freq, persistent=False) self.rotary_pos_emb.cached = True # `full_attention_mask` is not None only when # `past_key_values` is not None and `seq_length` > 1 if full_attention_mask is not None: causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)], dtype=inputs_embeds.dtype, device=inputs_embeds.device) mask_value = torch.finfo(inputs_embeds.dtype).min causal_mask.masked_fill_(full_attention_mask, mask_value) elif self.training or (inputs_embeds.device.type != "xpu" and past_key_values is None): full_attention_mask = self.get_masks(input_ids, past_key_values, padding_mask=attention_mask) causal_mask = torch.zeros([batch_size, 1, seq_length, full_attention_mask.size(-1)], dtype=inputs_embeds.dtype, device=inputs_embeds.device) mask_value = torch.finfo(inputs_embeds.dtype).min causal_mask.masked_fill_(full_attention_mask, mask_value) else: causal_mask = None hidden_states, presents, all_hidden_states, all_self_attentions = self.encoder( inputs_embeds, causal_mask, rotary_pos_emb=(self.rotary_pos_emb.inv_freq, position_ids), kv_caches=past_key_values, use_cache=use_cache, output_hidden_states=output_hidden_states ) # ipex-llm changes end if presents is not None and type(presents) is torch.Tensor: presents = presents.split(1, dim=0) presents = list(presents) presents = [list(x.squeeze(0).split(1, dim=0)) for x in presents] presents = [tuple([x.squeeze(0) for x in y]) for y in presents] presents = tuple(presents) if not return_dict: return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions, ) def chatglm4v_attention_forward( self, hidden_states, attention_mask, rotary_pos_emb, kv_cache=None, use_cache=True ): # hidden_states: [b, sq, h] bsz, q_len, _ = hidden_states.size() # past_key_value: [bsz, n_kv_head, seq_len, head_dim] past_key_value = None if kv_cache is not None: if isinstance(kv_cache, tuple): past_key_value = kv_cache else: past_key_value = (kv_cache[0][0], kv_cache[0][1]) n_head = self.num_attention_heads_per_partition n_kv_head = self.num_multi_query_groups_per_partition if self.multi_query_attention else n_head head_dim = self.hidden_size_per_attention_head qkv = self.query_key_value(hidden_states) # [bs, q_len, np * 3 * hn] -> [bsz, n_head, seq_len, head_dim] qkv = qkv.view(bsz, q_len, n_head + 2 * n_kv_head, head_dim) qkv = qkv.transpose(1, 2) query_states, key_states, value_states = qkv.split([n_head, n_kv_head, n_kv_head], dim=1) kv_seq_len = key_states.shape[2] if past_key_value is not None: kv_seq_len += past_key_value[0].shape[2] # IPEX-LLM OPT: fuse rope inv_freq, position_ids = rotary_pos_emb rot_dim = inv_freq.size(-1) * 2 if should_use_fuse_rope(hidden_states, rotary_pos_emb[1], self.training): import xe_addons xe_addons.rotary_two_inplaced(inv_freq, position_ids, query_states[..., :rot_dim], key_states[..., :rot_dim]) else: idx_theta = torch.outer(position_ids[0].float(), inv_freq.float()).to(hidden_states.dtype) idx_theta = idx_theta.unsqueeze(0).unsqueeze(0) cos = torch.cos(idx_theta).repeat_interleave(2, -1) sin = torch.sin(idx_theta).repeat_interleave(2, -1) q_rot, k_rot = apply_rotary_pos_emb(query_states[..., :rot_dim], key_states[..., :rot_dim], cos, sin, position_ids, "chatglm") query_states[..., :rot_dim] = q_rot[...] key_states[..., :rot_dim] = k_rot[...] # IPEX-LLM OPT: kv cache and quantize kv use_quantize_kv = use_quantize_kv_cache(self.query_key_value, query_states) key_states, value_states = update_past_key_value( past_key_value, key_states, value_states, kv_seq_len, use_quantize_kv, hidden_states.device ) if use_cache: if past_key_value is None: past_key_value = torch.cat((key_states.unsqueeze(0).unsqueeze(0), value_states.unsqueeze(0).unsqueeze(0)), dim=1) else: past_key_value = (key_states, value_states) else: past_key_value = None # IPEX-LLM OPT: sdp attn_weights = None if use_sdp(q_len, kv_seq_len, head_dim, query_states): import xe_addons if use_quantize_kv: attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, attention_mask) else: attn_output = xe_addons.sdp(query_states, key_states, value_states, attention_mask) elif use_sdp_causal(q_len, kv_seq_len, head_dim, query_states, self.training): import xe_addons if use_quantize_kv: attn_output = xe_addons.sdp_fp8_causal(query_states, key_states, value_states, attention_mask) else: attn_output = xe_addons.sdp_causal(query_states, key_states, value_states, attention_mask) elif query_states.device.type == "cpu": # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, n_head // n_kv_head) value_states = repeat_kv(value_states, n_head // n_kv_head) if q_len == kv_seq_len: attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, is_causal=True ) else: attn_output = torch.nn.functional.scaled_dot_product_attention( query_states, key_states, value_states, attention_mask ) else: if use_quantize_kv: key_states, value_states = restore_fp8_kv_cache(key_states, value_states, query_states.dtype) # repeat k/v heads if n_kv_heads < n_heads key_states = repeat_kv(key_states, n_head // n_kv_head) value_states = repeat_kv(value_states, n_head // n_kv_head) attn_weights = torch.matmul(query_states / math.sqrt(head_dim), key_states.transpose(2, 3)) if attention_mask is not None: attn_weights = attn_weights + attention_mask if kv_seq_len >= 2048 or bsz >= 64: # for memory considerations, do not upcast attention to fp32 # for long sequences or large batches attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) else: # upcast attention to fp32 attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(value_states.dtype) attn_output = torch.matmul(attn_weights, value_states) # context_layer's shape: [bsz, n_head, seq_len, head_dim] -> [seq_len, bsz, n_head * head_dim] attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, n_head * head_dim) output = self.dense(attn_output) return output, past_key_value def visual_attention_forward(self, x: "tensor(B, L, D)") -> "tensor(B, L, D)": B, L, _ = x.shape qkv = self.query_key_value(x) qkv = qkv.reshape(B, L, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, H, L, D q, k, v = qkv[0], qkv[1], qkv[2] bsz, q_len, kv_seq_len, head_dim = q.shape if use_sdp(q_len, kv_seq_len, head_dim, q): import xe_addons out = xe_addons.sdp(q, k, v, None) elif q.device.type == "cpu": out = torch.nn.functional.scaled_dot_product_attention(q, k, v, attn_mask=None, dropout_p=0., is_causal=False) else: attn_weights = torch.matmul(q / math.sqrt(head_dim), k.transpose(2, 3)).to(v.dtype) if kv_seq_len >= 2048 or bsz >= 64: # for memory considerations, do not upcast attention to fp32 # for long sequences or large batches attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1) else: # upcast attention to fp32 attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(v.dtype) out = torch.matmul(attn_weights, v) output = self.dense(out.transpose(1, 2).reshape(B, L, -1)) output = self.output_dropout(output) return output def patch_embedding_forward(self, images: "tensor(B, C, H, W)") -> "tensor(B, L, D)": x = self.proj(images) x = x.flatten(2).transpose(1, 2) cls_token = self.cls_embedding.expand(x.shape[0], -1, -1) x = torch.cat((cls_token, x), dim=1) x += self.position_embedding.weight.unsqueeze(0).to(images.device) return x